MITSUBISHI
 AC SPINDLE DRIVE FREQROL－SF

MAINTENANCE MANUAL

WIRING PLATE（接続名板）

1. GENERAL 1
1.1 Usage of Maintenance Manual 1
1.2 Safety during maintenance and troubleshooting 1
1.3 Storage 2
2. SPECIFICATIONS 3
2.1 AC spindle motor controller specifications 3
2.2 Output characteristics 9
2.3 Auxiliary functions 10
2.4 Composition 14
2.5 External wiring 18
2.6 Parts arrangement 24
3. ADJUSTMENT DURING OPERATION 26
3.1 Prelimiary check 26
3.2 Power feeding 27
3.3 Status display and parameter setting 29
3.4 NC display 37
3.5 Parameter setting 40
3.6 Adjustment 69
3.7 Trial operation 70
3.8 Initial adjustment 71
4. CARD CHECK 76
4.1 Card SF-CA 76
4.2 Carc SF-OR 85
4.3 Card SF-TL 88
4.4 Card SF-PW 91
5. ADDITION AND REPLACEMENT OF COMPONENTS 93
5.1 Addition of option card (SF-OR, DA, TL) 93
5.2 Replacement of card 94
5.3 Replacement of ROM 95
5.4 Replacement of diode module and transistor module 97
5.5 Disassembly and assembly of $S J$ type $A C$ spindle motor 98
6. INSTALLATION OF ORIENTED SPINDLE STOP POSITION DETECTOR 106
6.1 Magnesensor 1-point oriented spindle stop 106
6.2 Encoder type oriented spindle stop (4096 po- ints) 119
7. PROFILING CONTROL (C-AXIS CONTROL) ENCODER 124
7.1 Name 124
8. TROUBLESHOOTING 129
8.1 General information 129
8.2 First step of troubleshooting 130
8.3 Second step of troubleshooting 131
8.4 Detailed trouleshooting 135
9. PERIODIC INSPECTION 151
9.1 Inspection of control equipment 151
9.2 Inspection of motor 152
10. PARTS LIST 154
§1. GENERAL
1.1 Usage of Maintenance Manual

FR-SF series inverters are designed to drive machine tool spindles, and feature quiet operation, stable and rapid response, and energy saving.

This Manual mainly describes troubleshooting and maitenanoe of $F R-S F$ series inverters.
1.2 Safety during maintenance and troubleshooting

The maintenance and troubleshooting should be done with the following safety consideration:

- The control equipment should be started, maintained and remedied by quialified electrician.
- When person who maintains or remedies the control equipment must touch a part of the equipment, he should take off finger ring, wristwatch, necktie pin, and other metallic goods before starting the work.
- Electric shock may cause fatal accident. When a circuit at high voltage must be checked, due care should be taken to select appropriate test/inspection equipment, tools, etc. and to use them safely (no matter wheter or not the circuit is grounded). When a test equipment is applied to a part, component, or circuit of the equipment, operator should pay attention not to touch a grounded part. In general, test equipment should not be grounded. During test or measurement, it is likely the high voltage is present between the test equipment and the ground. When motor is run during adjustment or remedy, due care should be taken in this respect.
- Person who carries out maintenance or remedy should not wear loosily. Otherwise, wear might be involved into the running machine.
o While the control equipment is on, P.C. board or card should

$$
-1-
$$

not be loaded or unloaded.

- Immediately after the control equipment is turned off, the maintenance or remedy should not be started immediately, but it should be verified that power indicator lamp LED10 (card SF-CA) is not on, before start the work (about 3 minutes is taken until the lamp goes out).

1.3 Storage

When the equipment is not used, store it in clean and dry environment.
Note that humidity and dust entering into the equipment may adversely affect insulation resistance of the equipment.

When the equipment is left out of operation for any length of time, the same cautions should be taken.

It is recommended to use a heater to keep the environment dry.

	em	Series	FR-SF-2-									
4 0 -1 -1 0 4 0 0	$\stackrel{\stackrel{\sim}{\circ}}{\stackrel{\sim}{6}}$	Panel inside mount type	11K	11K	22K	26K	30K	37K	11K	15K	26K	30K
		Intermediate panel mount type	$11 \mathrm{~K}-\mathrm{C}$	$11 \mathrm{~K}-\mathrm{C}$	22K-C	26K-C	30K-C	$37 \mathrm{~K}-\mathrm{C}$	$11 \mathrm{KC}-\mathrm{C}$	15K-C	26K-C	30K-C
	Power capacity (KVA)		9	12	17	23	38	33	9	12	17	23
	Total heat generated(*1) (W)		340	400	490	590	700	810	340	400	490	590
	Power supply (*2)		200/220~230V $+10 \%,-15 \%, 50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$									
	$\begin{aligned} & 1 \\ & \frac{1}{40} \\ & 000 \\ & -10 \\ & 0 \\ & 3 \end{aligned}$	Panel inside mount type		7	48		67	73	27	37	48	67
		Intermediate panel mount type		7	48		67	73	27	37	48	67
	Main circuit		Transistor sinusoidal wave PWM inverter									
	Control circuit		Pulse generator speed feedback, digital closed loop control, vector control									
	Brake											
	Speed control range		$35-6000$			$35-5000$		-4000	35-6000	$35-4800$		
	Speed regulation		Less than 0.2% of maximum speed (load variable within range of 10% to 100%)									
	Speed reference signal		Analog signal, +10V Max. (input impedance: About 10Kohm)									
	Ambient temp./humidity		$-5^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}, 45 \%$ to $85 \% \mathrm{RH}$									
	Atmosphere		To be free from deterimental gas and dust (Environmetal requirement: JEM 1103, Grade C)									
	Vibration		Less than 0.5G									
	Applicable standard		IEC									

Notes: 1. This is the total heat generated during operation with the continuous rated output. In the case of intermediate panel mount type, panel outside heat is equal to [(total heat 120) x $0.7(W)]$.
2. When supply voltage other than specified here is used, use a transformer.
3. For constant-output range other than " $1: 8$ " and " $1: 12$ ", consult. us.

Notes: 1. This is the total heat generated during operation with the continuous rated output. In the case of intermediate panel mount type, panel outside heat is equal to [(total heat 120) $x 0.7(W)]$.
2. When supply voltage other than specified here is used, use a transformer,
3. For constant-output range other than "1:8" and "1:12", consult us.

2．2 Output characteristics

$\left\lvert\, \begin{aligned} & \text { व } \\ & \text { a } \\ & \text { 号 } \\ & \text { a } \\ & \text { 岄 } \end{aligned}\right.$	$\text { Fig. } 1$	Output $\mathrm{P} 1 / \mathrm{P} 2 / \mathrm{P} 3 / \mathrm{Pq}$			Fig． 2	nul．put P1／P2／P3／Pd					
		$\text { 5.5/3. } 7 / 3 / 2 \text { (XV) }$				S J－11．4P	S J－11A	S J－15A	5 J－18．5．		
			7．5／5．5／	13 （ma）		11／7；8；＇s	11／7．5／8／5． 5	15／11／11／8	18．5／15／13．5／11 （IV）		
		1／5／4／2．5（HP）10／7／5／4（HP）				（18）	（EII）	（ki）			
		$\mathrm{Pl}{ }^{30 \mathrm{aln} \text { ．}}$	rating			15／9／10／7 （HP）	15／10／10／7 （HP）	20／15／15／10 （HP）	$\begin{gathered} 25 / 20 / 12 / 15 \\ \text { (HP) } \end{gathered}$		
	\cdots	Output：			Output						
	Fig． 3	Output $\mathrm{P} 1 / \mathrm{P}_{2}$			Fig． 1	Oul．int P1／P2					
		SJ－22AP ${ }^{\text {S }}$ S－22A	S J－26A	S J－ 30 A		S J－ 30 B	5J－378	5J－45日			
		22／15（171）${ }^{22 / 10.5(51)}$	26／22（111）	30／22（17）		30／22（k71）	37／30（18）	45／37（III）			
		30／20（HP）${ }^{\text {30／25（HP）}}$	15／30（Hip）	30／30（4P）		10／30（HP）	50／40（RP）	60／50（8P）			
						Output					
	Fig． 5	Output $\mathrm{PI} / \mathrm{P} 2$		Fig． 6	Output	$\mathrm{Pl} / \mathrm{P} 2$	Fig． 1				
		$5 J-5.5788$ $5 \mathrm{~J}-7.5 \times 18$	5J－11x78		5］－15：7a	5J－18．5Mr8		51－22．189			
			11／7．5（611）			18．5／15（IV）		22／18．5（III）			
			15／10（HP）		$20 / 15 \text { (HP) }$	25／20（HP）		30／22（HP）			
				Oulput			Outpu		ratace		
	Fig． 1	Outiput P1／P2			$\text { Fig. } 9$	Output $\mathrm{Pt} / \mathrm{P}_{2}$					
		SJ－5．5XWC				51－7．5xich	5］－11mis	51－154．5			
		5．5／17（ F （1）				7．5／5．5（kn）	11／7．5（k7）	15／11（51）			
		． $7 / 5$（HP）				10／7（HP）．	15／10（HP）	20／15（HiP）			
					Output						
$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \frac{c}{0} \\ \frac{c}{1} \\ \vec{I} \end{array}\right\|$	Fig． 10	Output P1／P2／P3／PI		Fig． 11	utput $\mathrm{P} 1 / \mathrm{P}_{2}$		Fig． 12				
	：	5 J－5．5AZ	｜S J－7．5A Z								
		$5.5 / 3.7 / 2+1 / 1.6(\mathrm{MH}$	7．5／5．5i3／2（k11）								
			／2．6（HP）								

2.3 Auxiliary functions

Function	Application	Description	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Refer } \\ \text { to } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { Internal para- } \\ & \text { meter setting } \\ & \text { range } \end{aligned}$	Input/ output
Speed meter output	$\begin{aligned} & \text { Speed dis- } \\ & \text { play } \end{aligned}$	When speed is maximum, single-swing DC1mA meter reads the maximum value (full scale) and DC1OV is output.		-.	Max. DC10V output
Load meter output	Load display	When load is 120% of $30-\mathrm{min}$. rated output, singleswing DC1mA meter reads the maximum value (full scale) and DC3V or DC1OV (selectable, standard: loV) is output.			$\begin{aligned} & \text { DC3V or } \\ & \text { DC1OV } \\ & \text { output } \end{aligned}$
Zero speed output signal	Machine interlock	Signal which closes contact, or turns on output transistor, when motor speed is below the referenced speed.		$0-1000 \mathrm{rpm}$ Standard: 50 rpm Quasi- standard: 25 rpm	Contact output Openemitter output
Up-to- speed output signal	Answer back to NC	Signal which turns on output transistor when speed is within $\pm 15 \%$ of the referenced speed.			Openemitter output Open-collector output
Speed detect output		Signal which turns on output transistor when motor speed is below the referenced speed.		$1-120 \%$ of max. speed Standard: 10\%	Openemitter output Open-co1lector output
Load detict output signal	Prevention of cutter sticking	Signal which turns on output transistor when output			Openemitter output

Function	Application	Description	Refer to	Internal parameter setting range	Input/ output
		exceeds 110% of rated output.			
Spindle fault output signal (alarm)	Spindle fault	Signal which opens contact, or turns off output transistor, if spindle fault occurs			Contact output Open emitter output
Spindle fault content output signal (alarm)	Spindle fault content	In case of spindle fault, the data indicating the cause is output (combination of 4 output transistor statuses).			Openemitter output
Torque limit output signal		Signal which turns on output transistor while torque is being limited.			Openemitter output
Torque limit command input	Motor torque is reduced temporarily when gear is shifted, for example	Torque limit input signal With signal input through TLI and OT, motor torque is limited to half of parameter TLM (\#35) setting. With signal input through TLZ and OT, motor torque is ifmited to parameter TLM (H35) setting.		0-120\% of maximum torque Standard: 10\%	External input
Machine ready intput	Verfication that machine is ready.	"Ready" when SET1 SET2 is closed.			External input
Alarm reset input	Reset of alarm flag in controller	Mlarm condition is reset when ARS1 ARST2 is closed.			External input

Function	Application	Description	Refer to	Internal parametter setting range	Input/ output
Speed reference digital/ analog select input	Selertion of digital speed reference signal	Digital signal is input when DIG - O is closed, and analog signal is input when DIG - ON is opened.			External input
Speed override input	Override to speed in auto- matic operation	Override can be set within a range from 50% to 120% by external potentiometer. Override is exerted when DEF - OD is closed.			External input
Emergency stop input	Emergency stop	Motor is decelerated by regenerative brake to stop. Emergency stop signal is given when ESP1 - ESP2 is opened.			External input
Alarm si.gnal output: for emer- gency stop	Alarm signal is output (ON) or not oul.put: (OFF) in case or. emergency stop.	When "ON" is selected, alarm signal is output in case of emergency stop. When "OFF" is selected, alarm signal is not output in case of emergency stop.		"ON"/"OFF"	Contact output Openemitter output


```
2.4 Composition
2.4.1 Basic composition (standard) ..... FR-SF-2-[.] [TK
```


2.4.2 Equipped with oriented spindle stop function (optional card SF-OR is used) . . . FR-SF-2- F? $K-R$
(1) Magnesensor spindle orientation (1 div.) specification

(2) Encoder spindle orientation (4096 div.) specification, equipped with index function

(3) Z-phase controlled motor built-in encoder multi-point spindle orientation specification, equipped with index function

(4) Magnesensor spindle orientation (1 div.) specification, equipped with motor speed feedback output
(for spindle speed display/sync. feed signal)

2.4.3 Controller bus-linked to M300 series CNC FR-SF-2-:]K-T Equipped with high-speed sync. tap/spindle orientation (optional card SF-TL is used)

(1) Motor built-in encoder high-speed sync. tap/magnesensor spindle orientation (1 div.) specification

(2) Encoder high-speed sync. tap spindle orientation (4096 div.) specirication, equipped with index function

(3) Z-phase controlled motor built-in encoder high-speed sync. tap/multi-point spindle orientation specification, equipped with index function

2.4.4 Controller bus-linked to M300 series CNC . . FR-SF-2-[... K-T Option card SF-TL is used.

2.5 External wiring

2.5.1 Basic wiring (without option card)

FR-SF-2-[.]K

Note *: When the system is equipped with index function, input signal TL1 is used for "CW index", and TL2 for "CCW index".
2.5.2 Model equipped with oriented spindle stop function (with option card SF-OR)

FR-SF-2-TK-R
(1) Magnesensor spindle orientation (1 div.)

(2) Encoder spindle orientation (4096 div.)/indexing function

(3) Z-phase control motor built-in encoder multi-point spindle orientation/index function

(4) Magnesensor spindle orientation (1 div.) with motor speed feedback output (for spindle speed display, sync. feed signal)

2.5.3 Model bus-linked to M3OO series CNC, and equipped with high-speed sync. tap spindle orientation (with option card SF-TL) FR-SF-2-TK-T
(1) Motor built-in encoder high-speed sync. tap magnesensor spindle orientation (1 div.)

(2) Encoder high-speed sync. tap spindle orientation (1096 div.)/index function

- When cable in uned for bas-line connection to M300, it must he shifelded with cable clamps (secured to grounding plate). For Inatallatlon of the cable, refer to the standard specification (ANI-AOBOI-18-E).
(3) Z-phase control motor built-in encoder high-speed sync. tap multi-point spindle orientation/index function

- When cable is used for bas-line connection to M300, it must be shielded with cable clamps (secured to grounding plate). For installation of the cable, refer to the standard Specification (BNP-AOBO1-18-E).
2.5.4 Model bus-inked to MЗОО series CNC
(1) C-axis control magnesensor spindle orientation (with option card SF-TL) FR-SF-2-fi:K-T

-When cable is used for bas-line connection to M300, it must be shielded with cable clamps (secured to grounding plate). For installation of the cable, refer to the Standard Specirication (BNP-A0801-18-E).

Hinged panel and sub-panel are attached
to each main board (common to all capacities).

§3. ADJUSTMENT DURING OPERATION

3.1 Preliminary check

Before turning on the controller, perform the following check:
(1) Is the external wiring in conformity with the relevant drawings or diagrams?
(2) Are the motor and control equipment grounded properly?
(3) Are all shielding wires terminated properly?
o Is each shield armour connected to the corresponding terminal?
o Is each shield armour not looped?

- When a cable is used for bus-line connection to M300, it should be secured to the grounding plate with cable clamps.

It the cable secured to the grounding plate?
(4) Is any component or part not loose?
(5) Is any foreign matter is not involved?
(6) Is there any damage or defect on each P.C. board.
(7) Are ROM No. in accordance with the order sheets?

3.2 Power feeding

3.2.1 Turning on the power

Immediately after the FR-SF is turned on, see the 7-segment readout at the center of front panel to check conditions:
(1) For FR-SF linked to M300 series CNC

3 - - A C 200/220 ON
\downarrow

Wait for turning on NC power

(2) For FR-SF not linked to M3OO series CNC

Alarm code is displayed in case of failure
3.3 Status display and parameter setting

1) Readout and switches

The readout and switches shown below are located on the card SF-CA.

"Operation status", "diagnosis", "error alarm", "parameter setting (1) (8)" and "debug" can be displayed.

MODE: Display mode can be changed.
UP: Value displayed in ADDRESS and DATA can be incremented.
DOWN: Value displayed in ADDRESS and DATA can be decremented.
SET: Data set for parameter is stored when this switch is pressed.
a) There are 12 display modes, namely, "operation status", "disgnosis", "error alarm", "parameter setting (1) - (8)" and "debug".
b) After turning on the power, "speed" is displayed in operation status mode unless alarm occurs.
c) In case of alarm, alarm code is displayed in error alarm mode.
d) Display mode can be changed by pressing 400 switch.
e) For display mode sequence and display content, refer to 4.1.2 "Readout display mode sequence".
2) Readout display mode sequence

FR-SF LED DISPLAT FUnCTION

- Display mode can be selected by pressing MODE switch.
- Display content can be changed in the same display mode by pressing UP or DOWN switch.

3) Operation status display list

In operation status mode, codes listed below are displayed.

Item	Code	unit	Description
Speed	r	rpm	Motor speed is displayed.
Reference speed	-	rpm	Commanded reference motor speed is displayed.
Position droop	E	Pulses	Number of remaining pulses on deviation counter. For pulses (minus) in reverse rota- tion, all decimal points light.
Load	I_	$\%$	Load condition is displayed (100\%: 30 min. rated output)

4) Diagnosis display list

Item	Display	Decription
Sequence		Indicates that the controller is ready for operation.
		Indicates that the controller is not ready for operation.

External I/O signals
External I/O signal can be monitored by seeing status of corresponding bit. For relationship between each signal and bit status, refer to the list below.

Ext	s1gnal	F	E	D	C	8	1	9	8	7	6	5	4	3	2	1	0
chat									$\begin{gathered} \text { TNF } \\ \text { g } \\ \text { R } \end{gathered}$							SRI 0 5 5 0 0 0 0 0	
CHP_{2}	Tif		.							$\begin{array}{\|l\|} \hline \text { DFIN } \\ \text { B } \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$						$\begin{array}{\|c\|} \hline \text { SVOH } \\ Z \\ 0 \\ 0 \\ ! \\ 0 \\ n \\ \hline \end{array}$	
St51										号	$\begin{gathered} 5 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ \vdots \\ \hline \end{gathered}$			$\begin{aligned} & E \\ & \text { E1 } \\ & \text { Z1 } \end{aligned}$		亏 0 0 0 0	z
3152								$\begin{aligned} & \hline C C I \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & m \end{aligned}$				$\begin{array}{\|c\|} \hline \text { UTS } \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$					

Warning No.

	Display		Description
Warning No.	$\begin{array}{\|c\|c\|} \hline-100 \\ \hline 100 \end{array}$	$E[\cdot[-1$ data	Indicates that parameter setting is not acceptable.
	$\begin{array}{\|c\|c\|} \hline \theta_{1}^{-1} \mid & 0 \\ \text { Ano. } \end{array}$		Indicates that emergency stop is exerted.

Parameter error No.

	Display		Description
Parameter error No.	$\frac{\mathrm{F}^{-0^{-}} \mid E^{2}}{2 \mathrm{ma}}$	$11_{1} 15$	Indicates parameter error No.

5) Alarm display mode

Alarm No.

	Display	Description
Alarm No.		Indicates alarm No.

Error alarm display

3.3.1 Alarm/warning functions

$\begin{array}{\|c} \hline \text { Alarm } \\ \text { No. } \\ \hline \end{array}$	Abbr.	Name	Description	(Note) Motion
10	UV	VOLTAGE DOWN	This alarm occurs if input supply volage goes down below the specified level, or if instantaneous power failure lasting for over lomsec occurs.	A
12	ME1	MEMORY ERROR (FAULT) 1	This alarm occurs if read from, or write to internal memory for controller system control does not go normally (memory is checked when the controller is turned on).	A
15	ME2	MEMORY ERROR (FAULT) 2	This alarm occurs if 2 -port memory for data communication (when FR-SF is bus-linked with M3OO series CNC) does not function properly.	A
17	BE	PC BOARD ERROR	This alarm occurs if any part of control card is not in good condition.	A
20	NSI	$\begin{aligned} & \text { NO SIGNAL } 1 \\ & \text { (PLG) } \end{aligned}$	This alarm occurs if signal from motor built-in encoder is not at normal level.	A
21	NS2	NO SIGNAL (Spind ENC.)	This alarm occurs if signal from encoder for oriented spindle stop is not input, or not at normal level.	A.
22	NSS	IC MAC 012 FAULT	This alarm occurs if IC "MAC 012) of control card does not function properly.	A
23	OSE	SPEED CONTROL ERROR EXCESS	This alarm occurs if difference between true motor speed and referenced speed is excessive.	A
24	BRT	BREAKER TRIP	This alarm occurs if current exceeding the specified limit flows in the main (power) circuit.	A

Al. arm No.	Abbr.	Name	Description	(Note) Motion
25	COC	CONVERTER OVERCURRENT	This alarm occurs if current exceeding the specified limit flows in converter.	A
26	PL	POWER PHASE FAILURE	This alarm occurs if any one of three phases of input power supply fails.	A
27	CPUE	CPU FAULT	This alarm occurs if error in arithmetic opeartion, due to improper parameter setting, occurs.	A
31	OS	OVERSPEED	This alarm occurs if motor speed exceeds 115% of the maximum motor speed.	A
32	OC	OVERVOLTAGE, INVERTER	This alarm occurs if current exceeding the specified limit flows in controller.	A
33	OV	OVERVOLTAGE, CONVERTER	This alarm occurs if voltage charged in main circuit capacitor goes up, due to regenerative brake energy, over the specified limit.	A
34	DP	DATA PARITY CHECK ERROR	This alarm occurs if parity check error occurs in data transmission between M300 series CNC and FR-SF (when FR-SF is bus-linked with CNC).	A
35	DE	DATA ERROR	This alarm occurs if movement command specified by CNC exceeds the specified limit (when FR-SF is buslinked with CNC).	A
36	TE	DATA TRANS FER ERROR	This alarm occurs if data transfer does not go satisfactorily (when FR-SF is bus-linked with CNC).	A
37	PE	PARAMETER ERROR	This alarm occurs if set parameter value is out of the permissịble range (this check is made when the	A

Alarm No.	Abbr.	Name	Description	(Note) Motion
			controller is turned on).	
45	OHF	CONTROLLER OVERHEAT	This alarm occurs if ambient temperature is excessively high, or main (power) circuit semiconductor overheats due to overload or stop of cooling fan.	A.
46	OHM	MOTOR OVERHEAT	This alarm occurs if motor overheats due to overload or stop of motor cooling fan.	A
52	OD	ERROR EXCESS	This alarm occurs if difference (error) between referenced position and true position is excessive in position loop control.	A
55	EM	EMERGENCY STOP	This alarm occurs if emergency stop signal is given by external signal source.	B
56	OA	OTHER AXIS FAULT	This alarm occurs if trouble occurs with other servo control axis (when FR-SF is bus-linked with CNC).	A
57	OPE	OPTION CARD ERROR	This alarm occurs if "sync. tap", "C-axis control" or "index function" signal is input while the system is not equipped with that function.	A
EO	IPF	INSTANTANEOUS POWER FAILURE	This warning occurs if input power supply is interrupted or its voltage goes down momentarily.	C
E4	WPE	PARAMETER	If parameter setting is not acceptable, this warning occurs.	C
E7	NCE	NC EMERGENCY	This warning occurs if emergency stop signal is input from CNC (when FR-SF is bus-linked with CNC). This warning occurs if emergency stop signal is input from external	B

Alarm No.	Abbr.	Name	Description	(Note) Motion
			signal source (when external emer- ency signal is acceptable parameter \#42 BSL has been set.	

Note: If protective function listed above is activated, Alarm No. is displayed by 7 -segment readout and the following occurs.

Motion A Controller base current is shut off, main (power) circuit contactor opens and the motor stops after coasting.

Fault signal contact FA-FC opens.
Motion B Motor is decelerated by regenerative brake and stops. After motor stops, base current is interrupted.
In this case, whether fault signal contact FA-FC opens or not depends on parameter setting.

Motion C Only warning is displayed (operation can be continued).

3.4 NC display:

Since display (format, content, etc.) and setting method differs from NC to $N C$, refer to the instruction manual of your NC system. Typical examples of NC display are described here.

Status display

 For status display, [SPINDLE MONITOR] of DIAGNOSIS screen is used. For use of this display function, FR-SF should be bus-linked with NC system.[SPINDLE MONITOR] DIAGNOSIS $2.2 / 2$

GAIN	10.0
DROOR	123456
MOTOR SPEED	6000
MOTOR LOAD	80
SPINDLE ALAMM	1201

76513210
CONTROL INPUT
control gUTFUT $\begin{array}{ll}\mathrm{L} & 01010101 \\ \mathrm{H} & 11001100 \\ \mathrm{~L} & 10101010\end{array}$ II 00110011
 MC sREC: \mid henu selret stEC:

Description
Position control loop gain is displayed. When position control loop is not used, "O" is displayed.
The standard position control loop gain is,
Motor speed (rad/s) Response delay (rad/s) $=10$

Error in true spindle angle from referenced spindle angle is called "droop". Droop is expressed in number of pulses. When position control loop is not used, "O" is displayed.

Appendix 1 Spindle alarm list

No.	Content		No.	Content	
10	Voltage down	PR	40	TR-TK unit switching failure	NR
11			11	FR-TK unit communication fallure	NR
12	Memory fault 1	AR	12		NR
13	External clock fault		13		NR
14			41		NR
15	Hemory fault?	PR	15	Controller overheat	NR
16			16	Motor overheat	NR
17	Card rault	IR	17		NR
20	No signal 1 (rLG)	PR	50		NR
21	Ho sigmal 2 (Spindle ENC)	IR	51		NR
22	IC Macoiz rault	TR	52	Error excess	NR
23	Speed control error excess	PR	53		NR
21	Breaker trip/mian circult rault	ΓR	54		NR
25	Converter overcurrent/brake Cault	PR	55		NR
26	「ower phase fallure	PR	56	Other axis fault	NR
27	cru [ault		57	Option card error	NR
30			EO	Instantaneous power failure warning	*
31	Overspeed	PR	E1		*
32	Inverter nvercurrent/overcurrent	PR	E2		
33	Overvol tape	FR	E3		
34	Data parity check error	FR	EA	Parameter error warring	*
35	Data fault	PR	E5		
36	Data transfor fault	PR	E6		
37	rarameter error	IR	E7	MIC emergency stop	

PR: Reset by turning off power supply of NC
AR: Reset by turning off power supply of spindle amplifier
NR: NC reset
*: "Servo OFF" does not occur.

3.5 Parameter setting

Parameters can be set through the readout and switches of card SF-CA of FR-SF.
(When the controller SR-SF is bus-linked with M3OO series CNC, a part of parameters can be set by the NC display unit.)

3.5.1 Parameter setting

1) Layout of readout and switches

2) Parameter setting

To specify parameter, set "SET1" and "SET2" (machine ready for operation) to "OFF".

Turn on the
 power

o Unless alarm occurs, speed is displayed in operation status mode by the readout (Fig. 1).

Fig. 1 SPEED display

Select mode.

- Mode changes step by step when 3000 switch is pressed.

Ex.: When 400 switch is pressed 3 times successively, display mode changes from operation status mode

- (Fig. 1) to parameter (1) mode (Fig. 2).

Select address.

- Address can be selected by pressing up and/or nom switches.
When address is selected, the data at that address is displayed.
Ex.: When UP switch is pressed while display is as shown in Fig. 2, <2 appears.

Another one touch of switch causes display of C3 (Fig. 3).

When eome switch is pressed while display is as shown in Fig. 3, O : appears.
Another one touch of switch causes display of © (Fig. 2).

- Press PG1 switch and reset the FR-SE (or turn off and then on the power).

Now data setting has been completed.

Parameter table

\#	Parametèr		Description	Setting range (unit)
01	NOX	Motor type	Setting depends on motor specification. 0 : Standard/quasi-standard specification 1: Wide range output specification 2: Other special specification	Decimal notation
02	MLS	Motor selection	Motor constant can be selected (ranging from "0" to "63") for motor used. (Refer to "Motor Parameter list".)	Decimal notation
03	PLG	Position loop encoder type	Setting depends on number of puises, specific to encoder used. $\begin{aligned} & 0: 1024 \text { pulses } \text { (encoder ori- } \\ & \text { ent tapper- } \\ & \text { less) } \\ & 1: 90,000 \text { pulses (for C-axis } \\ & \text { control) } \end{aligned}$	Decimal notation
04	MOD	External interface mode selection	Setting depends on type of interface with NC used. O: DIO (specification is same as that of FRSE) 2: Linked to M3OO series CNC through 2-port bus	Decimal notation

\#	Parameter		Description	Setting range (unit)
05	DSR	Speed reference signal type.	Setting depends on input speed reference signal type. This parameter is valid when \#04 MOD is set to "O". ```0: 12-bit binary 1: Signed 12-bit binary 2: BCD (2 digits) 3: BCD (3 digits)``` When signal is analog, either "O" or "1" is selected. For digital signal, one is selected from "0" - "3".	Decimal notation
06	MON	Output monitor selection	```Setting depends on type of meter output (analog voltage) from card SF-CA. O: Load meter 1: Torque meter Standard setting: 0```	Decimal notation
07	O1SL		Not used Set "O".	
08	O2SL		Not used Set "O".	
09	IISL	Muxiliary input selection	TL1/TL2 input functions are set. 0 : Torque control input 1: Index input	Decimal notation
$0 \wedge$	I2SL		Not used Set "O".	
OB	VOP	Speed reference offset	Offset is set when analog speed reference signal is used. Standard setting: 0	Signed deci mal notation $(-999 \leqq \leqq+999)$
OC	VON		Not used Set "O".	

\#	Parameter		Description	Setting range (unit)
OD	VGP	Speed reference signal gain	Gain for speed reference signal is set. Actual speed reference is product obtained by multiplying speed reference signal from external signal source by this setting (1 multiplier $=1000$). Standard setting: 1000	Decimal notation $(0 \leqq \leqq 1150)$
OE	VGN		Not used Set "O".	
OF	CSN2	2nd cushion time constant	Not used Set "O".	Decimal notation
10	DTYP	Data type	Whether data of parameters \#11 ~ \#20 are valid or invalid depends on this setting. 0: Invalid 1: Valid When "1" is selected, data set for parameters \#11 ~ \#20 become valid for input signal to connector CONC of card SF-OR. For details, refer to Specification "BNP-A0801-22".	Decimal notation
11	DT01	Data 1	These data are valid when "1"	Decimal
12	DTO2	Data 2	is set for \#10 parameter (data	notation
13	DT03	Data 3		
14	DT04	Data 4		
15	DT05	Data 5	Speed reference signal selected	
17	DT07	Data 6 Data 7	by speed select signal is set	
18	DT08 :	Data 8	for each data.	
19	DT09	Data 9	Data is set in terms of motor	
1 A	DT10	Data 10	Data is set in terms of motor	
1 B	DT11	Data 11 Data 12	speed within the range up to	
1 C	DT12	Data 12	the motor maximum speed set by \#31 TSP.	

Note: Parameter marked with * is set on the NC side when FR-SF is bus-linked to M3OO series CNC.

Note: Parameter marked with * is set on the NC side when FR-SF is bus-linked to M3OO series CNC.

Note: Parameter marked with * is set on the NC side when FR-SF is bus-linked to M3OO series CNC.

\#	Parameter		Description	Setting range (unit)
31	TSP	Motor maximum speed	The maximum speed of motor depends on this setting.	$\left\lvert\, \begin{aligned} & 1-3276(10 \mathrm{rpm}) \\ & 10-32760(\mathrm{rpm}) \\ & \text { for parameter } \\ & \text { setting on } \\ & \text { NC display } \end{aligned}\right.$
32	ZSP	Zero speed	Speed at which "zero speed" is output is set. Standard setting: 50	$1-1000$ (rpm)
33	CSN	Acceleration time con$\operatorname{stan} t$	Time for acceleration to referenced speed from zero speed is set (invalid for position loop control). Standard setting: 30 (300 for parameter setting on NC display)	$\begin{aligned} & 2-3276(10 \mathrm{msec} \\ & 20-3276(\mathrm{msec}) \\ & \text { for parameter } \\ & \text { setting on } \\ & \text { NC display } \end{aligned}$
34	${ }^{\text {SDT }}$	Speed detection ratio	Speed at which "speed detect" signal is output is set in terms of percentage to motor maximum speed. Standard setting: 10	$0-100(\%)$
35	TLM	Torque limit	Torque limit is set in terms of percentage for torque limit signal TL2 (TLH). Standard setting: 10	0-120(\%)
36	VKP	Speed loop proportional gain	Proportional gain is set for speed control loop. The larger the setting (100 150), the faster is the response, but the larger is the noise and vibration. Standard setting: 63	$0-1000$

\#	Parameter		Description	Setting range (unit)
37	VKI	Speed loop integral gain	Integral gain is set for speed control loop. It should be set so that its ratio to proportional gain VKP is almost constant. Standard setting: 60	$0-\frac{1000}{(1 / 10 \mathrm{rad} / \mathrm{s})}$
38	TYP	```Position loop "IN" type```	Setting is made for transition from "speed loop" to "position loop". 0: Position control loop "IN" after spindle orientation 1: Position control loop "IN" at the time control loop mode is switched Set "O" when initialization (home return) is required, otherwise set "1". Standard setting: 0 For C-axis control, 0 : Initialization by means of encoder I: Initialization by means of dog	Decimal notation
39	GRA1	Number of gear teeth on spindle side	Number of gear teeth for gear 00 is converted into hexadecimal value, and set.	$\begin{aligned} & 1-7 \mathrm{FFF}(\mathrm{HEX}) \\ & \text { For NC dis- } \\ & \text { play, its } \\ & \text { range is } 1 \text { - } \end{aligned}$
3 A	GRA2		Number of gear teeth for gear 01 is converted into hexadecimal value, and set.	32767 (decimal) and conversion into hexadecimal
3B	GRA3	.	Number of gear teeth for gear 10 is converted into hexadecimal value, and set.	required. Gear ratio is set with gear teeth on spindle side, and gear

Note: Parameter marked with * is set on the NC side when FR-SF is bus-linked to M300 series CNC.

Note: Parameter marked with * is set on the NC side when FR-SF is bus-linked to M300 series CNC.

\#	Parameter		Description	Setting range (unit)
43			Not used Set "O".	
44	CPI	Position control loop Kp, Kımultiplication	Valid when " 1 " is set for bit 8 \#45 CWT. $\mathrm{Kr} / \mathrm{K}_{1}$ multiplication which differs from that for oriented spindle stop is set for sync. tap and C-axis control. $\mathrm{Kp} / \mathrm{K}_{1}$ multiplication can be set within range from $1 / 16$ to 15 (folds) $\left(x 1=10_{H}\left(16_{D}\right)\right)$. With larger multiplication, response to impact load becomes faster, but gearing sound becomes larger. It is recommended to be set within range from $x 1$ to $x 2$ $\left(1010_{H}-2020_{H}\right)$. Usually same multiplication is applied to K_{p} and K_{1}.	Hexadecimal notation Setting example: To set K_{p} and K_{1} to $\times 1.5$, $\mathrm{CPU}=\frac{18}{\mathrm{~K}_{1}} \quad \frac{18 \mathrm{H}}{\mathrm{Kp}}$

\#	Parameter		Description	Setting range (unit)
5A	PDT .	Home return deceleration point	Point at which speed is decelerated to stop for home return is set. If overrun occurs at stop of. motor, setting should be increased. Standard setting: 88	$1-\underset{(\text { pulses })}{2000}$
5B	IPOS	Position loop in-position range	Range within which "in-position" signal is output in positioning control is set. Standard setting: Tap ... 10 C axis 3E8	Hexadecimal notation
5C	$\begin{aligned} & \text { PZSF } \\ & \mathrm{L} \end{aligned}$	Position loop zero return shift. (low byte)	Amount of shift of zero return position from Z phase, when loop	$\begin{array}{l\|l} \text { Tapper- } & \text { C axis } \\ \text { less } & \end{array}$
5D	$\begin{aligned} & \text { DZSP } \\ & \mathrm{H} \end{aligned}$	Position loop zero return shift \qquad	mode is changed from speed loop to position loop is set.	O-FFF 57 E 40
5E	DCSN	Dual cushion	This is set to apply cushion to speed change. 0 : Invalid 1: Valid It is set to surpress gear sound. Standard setting: 1	Decimal notation
5 F	PYX	Excitation ratio	Excitation ratio is set. To reduce gear sound, setting is decreased. To enhance impact load response, setting is increased. $\begin{gathered} \text { Standard setting: } 0 \\ 0: 50 \% \quad 1: 25 \% \quad 2: 75 \% \quad 3: 100 \% \end{gathered}$	

\#	Parameter		Description	Setting range (unit)
C1 C 2	OM1	```PG1 multi- plication for each gear```	Multiplication of \#21 PG1 (1st deceleration point) can be set for each gear. $10_{\mathrm{H}}\left(16_{\mathrm{D}}\right)$ is for 1 fold. When deceleration point in oriented spindle stop operation must be changed, this parameter is set. When "O" is set, multiplication is one fold.	$\begin{aligned} & 1 / 16-15 \\ & \text { times } \\ & (x 16) \end{aligned}$
$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} 4 \end{aligned}$	OM2	```PG2 multi- plication for each gear```	Multiplication of \#22 PG2 (2nd deceleration point) can be set for each gear. $10_{\mathrm{H}}\left(16_{\mathrm{D}}\right)$ is for 1 fold. When decleration point in oriented spindle stop operation must be changed, this parameter is set. When "O" is set, multiplication is one fold.	$\begin{aligned} & 1 / 16-15 \\ & \text { times } \\ & (x 16) \end{aligned}$

APPENDIX 2 Motor parameter list

$\begin{gathered} \text { DATA } \\ \text { No. } \end{gathered}$	Mator type		Motor max. speed	$\begin{aligned} & \text { DNTA } \\ & \text { No. } \end{aligned}$	Motor type		Notor max. speed
0	$\begin{aligned} & 917 \text { F } 335 \\ & 1500 / 6000 / 10000 \end{aligned}$	$1.5 / 2.2 \mathrm{kr}$	6000.	32		1.5/2.2kn	6000
1	$\begin{aligned} & 925 \text { F } 135 \\ & 1500 / 6000 / 10000 \end{aligned}$	$2.2 / 3.7 \mathrm{~km}$	6000	33	$\begin{aligned} & 925 \mathrm{~F} / 38 \\ & 1150 / 3.150 / 8000 \end{aligned}$	$2.2 / 3.7 \mathrm{kr}$	6000
2	$\begin{aligned} & 95 \overline{F 11 /} \\ & 1500 / 4500 / 8000 \end{aligned}$	$3.7 / 5.5 \mathrm{kr}$	6000	34	$\begin{aligned} & \frac{1}{9} \overline{6} \bar{F} 113 \\ & 1150 / 3150 / 8000 \\ & \hline \end{aligned}$	3.7/5.5kr	6000
. 3	$\begin{aligned} & 957 \mathrm{FA} 19 \\ & 1500 / 4500 / 8000 \\ & \hline \end{aligned}$	5.5/7.5kn	6000	35	$\begin{aligned} & 957 \text { F131 } \\ & 1150 / 3150 / 6000 \\ & \hline \end{aligned}$	5.5/7.5kr	6000
4	$\begin{aligned} & 957 \overline{\mathrm{~F}} 126 \\ & 1500 / 4500 / 8000 \\ & \hline \end{aligned}$	5.5/9.0kn	6000	36			
5	$\begin{aligned} & 977 \text { F } 104 \\ & 150 / 1500 / 6000 \end{aligned}$	$7.5 / 11.0 \mathrm{kv}$	6000	37	$\begin{aligned} & \text { 977 F F } 03 \\ & 1150 / 3150 / 6000 \\ & \hline \end{aligned}$	$7.5 / 11.0 \mathrm{kr}$	6000
6	$\begin{aligned} & 013 F 129 \\ & 1500 / 4500 / 6000 \end{aligned}$	$11.0 / 15.0 \mathrm{~km}$	6000	38	$\begin{aligned} & 013 \overline{F 131} \\ & \underline{1150 / 3150 / 6000} \\ & \hline \end{aligned}$	$11.0 / 15.0 \mathrm{~km}$	6000
7	$\begin{aligned} & 017 \bar{F} 108 \\ & 1500 / 4500 / 6000 \end{aligned}$	$15.0 / 18.5 \mathrm{~km}$	6000	39	$\begin{aligned} & 017 F 1105 \\ & -1150 / 3150 / 16001 \end{aligned}$	$15.0 / 18.5 \mathrm{kr}$	6000
8	017 F 108 $1500 / 4500 / 6000$	18.5/22.0kw	6000	10	$\begin{aligned} & 019 \text { F } 112 \\ & 1150 / 3.150 / 1600 \\ & \hline \end{aligned}$	$18.5 / 22.0 \mathrm{kr}$	6000
9	0i9 F. 45 $1500 / 4500$	22.0/26.0kr	6000	11	$\begin{aligned} & 023 \text { F } 1741 \\ & 1150 / 3150 / 4600^{2} \end{aligned}$	$22.0 / 26.0 \mathrm{~km}$	6000
10	$\begin{aligned} & 026 \overline{F 105} \\ & 1500 / 4500 \\ & \hline \end{aligned}$	22.0/30.0km	6000	42	$\begin{aligned} & 026 \text { F } 106 \\ & 1150 / 3150 / 1600^{2} \end{aligned}$	$22.0 / 30.0 \mathrm{~km}$	6000
11				13	$\begin{aligned} & 031 F 120 \\ & 1150 / 3150 / 1600^{3} \end{aligned}$	$30.0 / 37.0 \mathrm{~km}$	6000
12				14	$\begin{aligned} & 038 \text { F } 121 \\ & 1150 / 3150 / 4600^{3} \\ & \hline \end{aligned}$	$37.0 / 45.0 \mathrm{~km}$	6000
13				15			
11				16			
. 15				17			
16	Sanc as Ho. 0	1.5/2.2kr	10000	18			
17	No. 1	2.2/3.7kr	10000	19	Same as No. 33	$2.2 / 3.7 \mathrm{kr}$	10000
18	No. 2	3.7/5.5kn	10000	50.	No. 34	3.7/5.5kr	10000
19	No. 3	5.5/7.5kr	10000	51	No. 35	5.5/7.5kn	10000
20	No. 1	5.5/9.0kw	10000	52			
21	No. 5	7.5/11.0kr	10000	53	$\begin{aligned} & \text { Same as } \\ & \text { Ho. } 37 \end{aligned}$	7.5/11.0kn	10000
22	No. 6	11.0/15.0kn	10000	51	No. 38	11.0/15.0kn	10000
23	No. 7	15.0/18.5kn	10000	55	No. 39	15.0/18.5kn	10000
21	No. 8	18.5/22.0kr	10000	56	No. 10	18.5/22.0kn	10000
25	No. 9	22.0/26.0k\%	10000	57	No. 11	22.0/26.0kr	10000
26	No. 10	22.0/30.0kr	10000	58	No. 12	22.0/30.0kr	10000
27				59	No. 13	30.0/37.0kr	10000
28.				60	No. 11	37.0/45.0kn	10000
29				61			
30				62			
31.				63			

Note: For motor having maximum speed ranging from 6001 rpm to 10000 rpm , use motor constant of 10000 rpm for maximum speed.

3.5.2 Parameter setting

When [SP.INDLE PARAMETER] of MACHINE PARAMETER screen is selected, parameters are displayed.

There are two groups of spindle parameters; one is those used on NC side, and the other is those sent to FR-SF when FR-SF is bus-linked with NC.
(1) Parameters used on

1 slimt 1	013	stap 1	527
22	79014	2	2640
$3 \quad 3$	400015	3	
4	016	4	
5 smax 1	017	smini	1
6	79018		
$7 \quad 3$	400019		
8 4	020		
9 ssift 1	021	sori	0
102	022 s	sgear	0
113	023		
124	024		.
\#(I) datal			
mC-ERR ${ }^{\text {a }}$ MACRO	TSPBPITM	PLC	menu

Spindle parameter list (1/2)

\#	Parameter			Description		Setting range (unit)
1 2 3 4	slimt	1 2 3 4	Speed limit	$\left.\begin{array}{rl} \text { For } & \text { GEAR } \\ \text { GEAR } & 01 \\ \text { GEAR } & 10 \\ \text { GEAR } & 11 \end{array}\right)$	spindle speed with motor at maximum speed is set.	0-99999(rpm)
5	smax	1 2 3 4	Max. speed	$\text { For } \left.\begin{array}{rl} \text { GEAR } & 00 \\ \text { GEAR } & 01 \\ \text { GEAR } & 10 \\ \text { GEAR } & 11 \end{array}\right)$	maximum spindle speed is set. Slimt \geqq Smax	
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	ssift	1 2 3 4	Shift speed	For $\left.\begin{array}{r}\text { GEAR } \\ \text { GEAR } \\ \text { GEAR } \\ \text { GE } \\ \text { GEAR } \\ \text { 11 }\end{array}\right)$	spindle speed for gear shift is set.	O-32767 (rpm)
13 14 15 16	stap	1 2 3 4	Tap speed	For $\left.\begin{array}{rl}\text { GEAR } & 00 \\ \text { GEAR } & 01 \\ \text { GEAR } & 10 \\ \text { GEAR } & 11\end{array}\right]$	maximum spindle speed during tap cycle is set.	0-99999 (rpm)

(2) Parameters sent to FR-SF
 bus-linked with NC.

Note: Parameter set
on the NC display can be made invalid by setting switch SW5-1 of card SF-CA to "ON". In this case, parameters set by FR-SF becomes valid.

Spindle parameter list (2/2)

\#	Parameter		Description	Setting range (unit)	
3	PGC	Sync. tap, C-axis control position loop gain	Spindle position loop gain during sync. tap C-axis control is set. Standard setting: 10.00	$\begin{array}{r} 0.01-999.99 \\ (\mathrm{rad} / \mathrm{s}) \end{array}$	
4	ZRZ	Spindle orienta-	Error range within which spindle	Encoder	Magnesensor
		```tion, in-posi- tion range```	output is set.   Standard setting: 1.00	$\begin{array}{r} 0-359 \\ (\operatorname{deg} .) \end{array}$	$0-39$
5	OSP	Spindle orientation speed	Spindle orientation speed is set.   Standard setting: 2.20	0-1000 ( rpm )	
6	CSP	Creep speed	Creep speed is set.   Standard setting: 20	0-1000 (rpm)	
7	RST	Position shift	Oriented spindle stop position is set.   Encoder: Stop position is set within 360 deg. with increment of 360/4096.   Magnesesnor: Stop position is set within range from -5 deg. to +5 deg. with increment of $10 / 1024$ (2040 for 0 deg.).   Standard setting: 2048	Encoder	Magnesensor
				$\begin{aligned} & 0-4095 \\ & \text { (pulses) } \end{aligned}$	$\begin{gathered} 1536 \\ 2560 \end{gathered}$
8	BRC		Not used Set to "O".		
15	ORS1	Oriented spindle stop control 1	For details of setting, refer to \#15.	Set in hexadecimal notation.   0 - FFFF	
16	ORS 2	Oriented spindle stop control 2	For details of setting, refer to \#16.		


\#	Parameter		Description	Setting range (unit)
17	TSP	Maximum motor speed	Maximum speed of motor is set.	0-32760(rpm)
18	ZSP	Motor zero speed	Speed at which "zero speed" signal is output is set.   Standard setting: 50	0-1000(rpm)
19	CSN	Accel./ decel. time constant	Time taken for acceleration   from 0 to maximum speed (or deceleration from maximum speed to zero) is set (this setting is ignored when position loop is used).   Standard setting: 300	0-32760(msec)
20	SDT	Speed detection ratio	Speed at which "speed detect" signal is output is set in terms of percentage to motor maximum speed.   Standard setting: 10	0-100(\%)
21	TLM	Torque   limit	Torque limit is set in terms of percentage for torque limit signal TL2.   Standard setting: 10	0-120(\%)
22	VKP	Speed   loop   propor-   tional   gain	Proportional gain is set for speed control loop.   The larger the setting (100 150), the faster is the response, but the larger is the noise and vibration.   Standard setting: 63	0-1000(rad/s)
23	VKI	Speed loop integral gain	Integral gain is set for speed control loop.   It should be set so that its ratio to proportional gain VKP	$0-\frac{1000}{(1 / 10 \mathrm{rad} / \mathrm{s})}$






$\#$	Parameter		Description	Setting range   (unit)
1	PG1	Magnesen-   sor ori-   ented   spindle   stop po-   sition   loop gain	Position loop gain in magne-   sensor spindle stop control is   set.   Standard setting: 100	$0-360(0.1 \mathrm{rad} / \mathrm{s})$
2	PG2	Encoder   oriented   spindle   stop po-   sition   loop gain	Position loop gain in encoder   spindle stop control is   set.   Standard setting: 100	$0-360(0.1 \mathrm{rad} / \mathrm{s})$
3	OSP	Not used in high-speed oriented   spindle stop.	0	
4	CSP	Oriented   spindle   stop   decelera-   tion.   ratio	Ratio of speed reduction after   position loop starts is set.   Standard setting: 30	$0-1000$

3. 6 Adjustment
3.6.1 Adjustment to be made for accommodation to machine
(1) Setting the meters

Set the speed meter and the load meter as listed below (only when the meters are connected to terminals SM1 and LM1 ).

	Setting		Potentiometer
Speed meter	Set SW5-4   of card   SF-CA to   "ON" posi-   tion.	Set VR4 so that   speed meter reads   the maximum speed.	VR4 of card SF-   CA
	Set VR5 so that   load meter reads   120\%.	VR5 of card SF-   CA	

(2) Parameter setting pins

Check that pins have been set in accordance with the relevant list attached to the FR-SF.

For details of parameters for the FR-SF, refer to "Parameter list".

When the FR-SF is bus-linked to M300 series NC, some parameters are set. through the NC CRT display.

Depending on FR-SF's specification, user should set number of gear teeth on the spindle side, and number of gear teeth on the motor side.'.
(3) Adjustment of oriented spindle stop position Use parameter "PST" (FR-SF's parameter No. 27) to adjust oriented spindle stop position.
A) Encoder/motor built-in encoder spindle orientation

$$
\text { Amount of position shift }=360^{\circ} \times \frac{\text { Setting }}{4096}
$$

B) Magnesensor spindle orientation

Zero degree $\left(O^{\circ}\right)$ position of magnesensor is assumed to be 2048 and angular range from $-5^{\circ}$ to $+5^{\circ}$ is divided by 1024.

Setting is possible within range from 1536 to 2560.
o If large hunting occurs at oriented spindle stop, position detector will be installed inversely. In this case, reverse setting at bit 8 of parameter ORS2.

Note: Numbers of gear teeth on spindle side and motor side are as follows:

$A \sim F:$ Number of gear teeth
Number of gear teeth on spindle side:
$G R A=A \times C \times E$
Number of gear teeth on motor side:
$G R B=B \times D \times F$

Correct gear ratio (or pulley ratio) should be assured for all gears in the drive system (from motor to spindle). Check that parameters GRA1 through GRB4 are set properly.

### 3.7 Trial operation

Tentatively run the motor under the normal load and check

- if unusual sound occurs,
o if foreign odor arises, and
o measure bearing temperature.


### 3.8 Initial adjustment

3.8.1 Adjustment of magnesensor spindle orientation

Speed


Set parameters properly, referring to the following table:

	Adjustment			
	OS P	CS P	PG1	PG 2
Overrun at   stop	$\succ$	$\succ$	$\ddots$	$r$
Long orienta-   tion time	$\ddots$	$\rightarrow$	$r$	$\rightarrow$
Hunting at   stop	$\rightarrow$	$\succ$	$\rightarrow$	$\nearrow$

Notes: 1. $\quad$ : Increase parameter setting.
$\rightarrow$ : Keep parameter setting unchanged
$\rangle$ : Decrease parameter setting.
2. If large hunting occurs at oriented spindle stop, position detector will be installed inversely. In this case, reverse setting at bit 8 of parameter ORS2.

To determine the best value for parameter setting, perform the following procedure:

1) Decrease OSP setting to about 50 rpm , and $P G I$ setting to about 80 , to prolong the time for which motion is at creep speed and try oriented spindle stop with the standard settings for CPS (i.e., 20rmp) and PG2 (i.e., 20) to check.
2) If overrun occurs at oriented spindle stop, increase PG2 setting (it may be increased up to 40). If overrun occurs again after PG2 setting is increased, decrease CSP setting (it may be decreased up to 10).

If overrun occurs again after decrease of CSP setting, enhance "servo rigidity" (later described).
3) After CSP and PG2 settings have been determined (at steps 2) and 3)), set parameters $O S P$ and PG1 to the standard values 220 rpm and 133 respectively and try oriented spindle stop to check.
4) If overrun occurs at oriented spindle stop, decrease PG1 setting gradually until overrun no longer occurs. If overrun cannot be eliminated with low PG1 setting, decrease OSP setting.
5) In case, where time for which motion is at creep speed is long (hence, time for spindle orientation is excessive), increase PG1 and/or OSP settings, avoiding occurrence of overrun (maximum permissible settings are 300 for $0 S P$, and 200 for PG1).
6) After completion of stnp 5), check speed at each stage of gearing.

It is recommended to give priority in setting sequence to fastier spindle speed, rather than slower speed, bebecnuse overrum is more likely to occur with faster spindle speed.
3.8.2 Adjustimenti of encoder spindle orientation


Sel: parameliers properly, referring to the following table:

	Majustment			
	0S5	cs P	PGI	PG2
Overrun at stop	$\checkmark$	$\checkmark$	'	'
long orjentation time	7	$\rightarrow$	$\checkmark$	$\rightarrow$
Hunting at :top	$\rightarrow$	$\checkmark$	$\rightarrow$	'

Noten: | $\quad . \quad$ | Increase parameter setting. |
| ---: | :--- |
|  | $\rightarrow \quad:$ Keep parameter setting unchanged. |
|  | b Decrease parameter setting. |

?. 1[ large hunting occurs at oriented spindle stop, position detector will be installed invorsnly. In thls case, reverse setting at blt 8 of parameter ORS2.

To determine the best value for each paraneter setting, porform the followling procedure:

1) Decrease OSl' setiting to about 50 rpm , and PG1 setting 1.o nbout 80 , t: prolong the time for which motion is al: cronp speed and try oriented spindie stop with the stinulind settings for Cr's (i.e., 20rpm) and PG2 (i.e., iU) lin slieck.
2) I.f nverrum nocurs at oriented spindle stop, increase l'ip settilng (it may be increased up to 40). ][ overrun ncours again after PG2 setting is increas- . ed, decirnse Conl settimp (it may be decreased up to 10).

If nvorrum ncourg ngnim afticr decrease of CSP setting, emhance "scrvo ripidity" (later described).
3) Actier cop nud l'G2 settings have been determined (at sl.cps ?) and 3)), set parameters $O S P$ and PG1 to the standard values, that: is, 220 rpm and 180 respective1.y, and liry oriented spindle stop to check.

1) $1 r$ overruit nccurs at oricnted spindle stop, decrease l'il anl:l:hng rradually until overrun no longer occurs. Ir overimm cammt he elimlnated with low PG1 setting, decrease osp sel.timg.
2) In cnse, where time for which motion is at creep speed
is long (hence, time for spindle orientation is excessive), decrease PG1 setting or increase OSP, avoiding occurrence of overrun (maximum permissible setting for OSP is 300 , and PG1 setting should be larger than PG2 setting).
3) After completion of step 5), check speed at each stage of gearing.

It is recommended to give priority in setting sequence to faster spindle speed, rather than slower speed, because overrun is more likely to occur with faster spindle speed.
3.8.3 Adjustment of servo rigidity
"Servo rigidity" at oriented spindle stop can be enhanced as follows:

1) Increase CSP setting to an extent where overrun does not occur or decrease PG2 setting (maximum permissible setting for CSP is about 30 rpm ..... for further adjustment, change PG2 setting).
2) By setting bit of parameter ORS1, increase two magnifications $\mathrm{K}_{\mathrm{r}}$ and $\mathrm{K}_{1}$ proportionally (if $\mathrm{K}_{\mathrm{r}}$ is set to 1.2, for example, Kı should be set to 1.2). If intense vibration occurs at oriented spindle stop, however, these settings cannot be further increased.
3) $\omega_{T}$ of parameter ORS1 is "gain" for compensation. Momentary servo rigidity can be increased by increasing this value. With increase of $\omega_{\mathrm{r}}$, however, torque for positioning decreases.
§4. CARD CHECK
4.1 Card SF-CA

Note: PIN7 and PIN8. differ depending on card group No. (G51 or G52).


(1) DIP switch list

O: DIP switch set at ON
$x$ : DIP switch set at OFF

Switch No.	Name	Description
SW5-1 to 3	TEST MODE selection	TEST MODE is selected.
SW5-4	Meter calibration	Meter full-scale output Meter normal mode   For calibration of speed meter and load meter   When SW5-4 is set at ON, meter full-scale voltage is output. Adjust potentiometer VR4 for calibration of speed meter, and VR5 for calibration of load meter.

(2) Pushbutton list

Switch No.	Name	Description
SW1	MODE	LED display mode is selected.   Each time the button is pressed, display   mode changes in the following sequence:   "STATUS" $\longrightarrow$ "DIAGNOSIS" $\longrightarrow$ "ALARM" $\longrightarrow$   "PARAMETER(1)" $\ldots .$. "PARAMETER(8)" $\longrightarrow$   "DEBUG"
SW2	UP	This button is pressed to scroll up display   in each mode.   In PARAMETER mode, parameter data is incre-   mented when this button is pressed after


Switch No.	Name	Description		
SW3	DOWN	UP button is pressed.		
SWis button is pressed to scroll down dis-				
play in each mode.				
In PARAMETER mode, parameter data is decre-				
mented when this button is pressed after				
DOWN button is pressed.			,	This button is pressed to rewrite parameter.
:---				
When SET button is pressed during PARAMETER				
mode, parameter data flickers.				
Then press UP and/or DOWN button to rewrite				
the data.				

(3) Jumper pin list

Pin No.	Name	Setting	Description
PIN1   PIN2	Bus interface setting   *For use of this function, parameter should be set. (\#O4MOD)	  rini rinz	This setting is made when $F R-S F$ is not bus-linked with M3OO series CNC
			Set parameter \#O4MOD to "O".
			This setting is made when $\mathrm{FR}-\mathrm{SF}$ is bus-linked with M3OO series CNC.
			Set parameter \#O4MOD to "2".
PIN3	```Short-circuit prevention time setting```		Time for which short-circuiting of transistors is prevented is set.   Since improper setting may cause damage to equipment, make sure the setting meets the order specification table.
PIN4	Test pin for conveter check	$\begin{array}{ll} 12 \\ 0 & 2 \\ \mathrm{MNA} \end{array}$	These test pins are used in the final test before shipment.   Do not set pin.
PIN5	Analog speed reference signal selection   *For use of this function, parameter should be set. (\#05DSR)	家 23 rims	For single-polarity signal input ( 0 to +10 V )
			Set parameter \#O5DSR to "O".
		123 rins	For double-polarity signal input ( -10 to +10 V )   *When input offset must be adjusted finely, this setting is used.
			Set paam parameter \#05DSR to "1".
PIN6	Test pin for control circuit check		These test pins are used in the final test before shipment.   Alarm caused by controller overheat is reset when 1 A is connected to 1B. When 2A is connected to $2 B$, alarm caused by tripping of breaker is reset.
PIN7	Current loop gain select	साएग rint	For $F R-S F$ capacity ranging from 5.5 kW to 15 kW


Pin No.	Name	Setting	Description
PIN7   (cont'd)			For FR-SF capacity larger than   18.5 kW
PIN8			


(4) LED list

LED No.	Description
LED1	Lights during regenerative energy is arising (converter).
LED2	Lights when inverter/converter base current is inter-   rupted.
LED3	Watch dog alarm   Lights after the power is turned on or after resetting.   When FR-SF is bus-linked with M300 series CNC, the LED   goes on lighting until initialization of NC is complet-   ed.
LED4   LED9	Status display and alarm display   LED10

(5) Potentiometer list

VR No.	Description
VR1	Converter voltage gain adjustment (CH35)
VR2	U-phase current feedback zero adjustment (CH40)
VR3	V-phase current feedback zero adjustment (CH41)
VR4	Speed meter adjustment
VR5	Load meter adjustment

(6) Check terminal list

Terminal No.	Common	Description
CH1	DGA	+5v 4.88
CH2		OV, DGA (digital signal grounding)
CH3		OV, D024 (+24V grounding)
CH4	D024	+24V 2.3
CH5	AGA	+15V
CH6	AGA	U-phase voltage command
CH 7	AGA	V-phase voltage command
CH8	AGA	W-phase voltage command
CH 9		OV, AGA (analog signal grounding)
CH1O	AGA	-15V
CH11	AGA	V-phase PWM waveform
CH12	AGA	W-phase PWM waveform
CH13	AGA	U-phase PWM waveform
CH14	AGA	V-phase standard sinusoidal vaveform
CH15	AGA	W-phase sandaard sinusoidal waveform
CH16	AGA	W-phase inverter current detection
CH1 7	AGA.	U-phase base amplifier drive signal
CH18	AGA	V-phase base amplifier drive signal
CH19	AGA	W-phase base amplifier drive signal
CH 2 O	AGA	$\bar{U}$-phase base amplifier drive signal
CH21	AGA	$\overline{\mathrm{V}}$-phase base amplifier drive signal
CH22	AGA	$\bar{W}$-phase base amplifier drive signal
CH23	AGA	U-phase standard sinusoidal waveform
CH24	AGA	Triangle wave carrier
CH25	AGA	Current amplitude command
CH26	AGA	-10V standard voltage
CH27	AGA	R-phase base amplifier drive waveform
CH28	AGA	S-phase base amplifier drive waveform


Terminal No.	Common	Description
CH29	AGA	T-phase base amplifier drive waveform
CH30	AGA	$\overline{\mathrm{R}}$-phase base amplifier drive waveform
CH31	AGA	$\bar{S}$-phase base amplifier drive waveform
CH32	AGA	$\overline{\text { T-phase base amplifier drive waveform }}$
CH33	DGA	Regenerative brake current control ... H level
CH34	AGA	Regenerative brake overcurrent .... L level
CH35	AGA	10 V for 400 V converter voltage
CH36	AG $\Lambda$	Supply voltage peak rectification
C¢ C 37	AGA	AD converter intput (speed feedback and voltage reference signal detection)
CH38	AGA	+10V standard voltage
CH39	AGA	Regenerative converter current detect 10 V at $200 \%$
CH40	AGA	U-phase inverter current detect $\quad 2.5 \mathrm{~V}$ at $100 \%$
CH41	AGA	V-phase inverter current detect $\quad 2.5 \mathrm{~V}$ at $100 \%$
CH42	AGA	Converter DC current detect 10V at 200\%
CH43	AGA	Inverter $U, V$, W-phase current full-wave rectification waveform $\qquad$
CH44	AGA	Speed feedback, B-phase
CH45	AGA	Speed feedback, A-phase
CH46	AGA	Analog speed reference signal input
CH47	CON24-2	Inverter base amplifier output, $U$ phase
CH48	CON26-6	Inverter base amplifier output, V phase
CH49	CON24-	Inverter base amplifier output, W phase
CH50	CON22-2	Inverter base amplifier output, Ū phase
CH51	CON22-2	Inverter base amplifier output, $\overline{\mathrm{V}}$ phase
CH52	CON22-2	Inverter base amplifier output, $\bar{W}$ phase
CH53	CON23-2	Converter base amplifier output, R phase
CH54	CON23-6	Converter base amplifier output, S phase
CH55	CON23-	Converter base amplifier output, T phase
CH56	CON22-5	Converter base amplifier output, $\overline{\mathrm{R}}$ phase


Terminal   No.	Common	
CH57	CON22-5	Converter base amplifier output, $\overline{\text { s }}$ phase
CH58	CON22-5	Converter base amplifier output, $\overline{\mathrm{T}}$ phase

4.2 Card SF-OR


Note: Name of pin may differ depending on card group No. (G51, G52).

G51	(S1)	(S2)	(S3)	(S4)	(S5)
	$\vdots$	$\downarrow$	$\downarrow$	$\vdots$	$\vdots$
After G51	PIN1	PIN2	PIN3	PIN4	PIN5


(1) Jumper pin list

(2) Check terminal list

Terminal   No.	Common	Description
CH1	DGA	Position feedback, A phase
CH2	DGA	Position feedback, B phase
CH3	DGA	Position feedback, Z phase
CH4	AGA	Magnesensor output
CH5	DGA	Magnesensor, linear zone output
CH6		Digital signal, common (DGA)

Note: Common "AG" should be take from CH9 of card SF-CA.

### 4.3 Card SF-TL

(1) Parts arrangement, card G51 group

(2) Parts arrangement, card G52 group

(3) Switch list

Name	Description
CS1	Rotary switch for axis No. setting.   Usually, it is set to "6".   When C-axis control is used, C axis No. is set.

(4) Jumper pin list

Pin No.	Name	Setting	Description
PIN1   PIN2   (Not provided for card group No. 52)	CONAA output selection		Encoder feedback signal from CONB is output.
			Feedback signal from motor detector (CON2) is output to CONAA.   For $Z$ phase, linear zone of magnesensor is output.
			Feedback signal from motor detector (CON2) is output to CONAA.
PIN3	Baudrate selection		CON12 serial interface baudrate is set to 19200.
			CON12 serial interface baudrate is set to 9600 .
PINQ	Test pin		Usuall, "1" is connected to "2". When "1-2" is opened and " $3-4$ " is closed, emergency stop signal caming through bus-link cable is ignored.
PIN5	Oriented spindle stop encoder power supply		Power supply of NC is not available.
			Power supply of NC is available.
.			

(5) LED list

LED No.	Description
LED1	Encoder open circuit detection
	This LED lights when magnesensor is used (it does   not detect open circuit of magnesensor).

(6) Potentiometer list

VR No.	Decription
VR1	Magnesensor sensitivity is adjusted.

Note: VR1 is not used in cards after card group No. G52.
(7) Check terminal list

Terminal No.	Common	Description
CH1	DGA	Position feedback, A phase
CH2	DGA	Position feedback, B phase
CH3	DGA	Position feedback, Z phase
CH4	AGA	Magnesensor output (MS signal)
CH5	DGA	Linear zone output (LS signal)

*Common DGA and AGA should be taken from card SF-CA.
4.4 Card SF-PW

This card provides all DC power supplies necessary for FRSF.

$$
\mathrm{AC} 170-\underbrace{253 \mathrm{~V}} \text { input }
$$

Notes: 1. All blocks other than block A are not insulated from the main circuit.
2. "O" line of block A is connected internally.

Block	Name	Com		DC	voltage
A	P 5 A	D G A	$\begin{aligned} & E \\ & 0 \\ & E \\ & E \\ & 0 \\ & 0 \end{aligned}$	$+5 \mathrm{~V}$	$\pm 3 \%$
	P 24 A	D 0.24		$+24 \mathrm{~V}$	$\pm 10 \%$
	P18A	A G A		+18V	$\pm 10 \%$
	N18 A			$-18 \mathrm{~V}$	$\pm 10 \%$
B	P15	D 10 F		+15 V	$\pm 10 \%$
	N10			$-10 \mathrm{~V}$	$\pm 10 \%$
C	P15	D 10 G		+15V	$\pm 10 \%$
	N 10.			$-10 \mathrm{~V}$	$\pm 10 \%$
D	P15	D 10 H		+15V	$\pm 10 \%$
	N 10			$-10 \mathrm{~V}$	$\pm 10 \%$
E	P15	D 10 A		$+15 \mathrm{~V}$	$\pm 10 \%$
	N10			$-10 \mathrm{~V}$	$\pm 10 \%$
F	P15	D 10 C		$+15 \mathrm{~V}$	$\pm 10 \%$
	N10			$-10 \mathrm{~V}$	$\pm 10 \%$
G	P15	D 10 D		$+15 \mathrm{~V}$	$\pm 10 \%$
	N10			$-10 \mathrm{~V}$	$\pm 10 \%$
H	P15	D 10 E		$+15 \mathrm{~V}$	$\pm 10 \%$
	N10			$-10 \mathrm{~V}$	$\pm 10 \%$
1	P15	D 10 B		$+15 \mathrm{~V}$	$\pm 10 \%$
	N10			$-10 \mathrm{~V}$	$\pm 10 \%$
J	ACDOWN signal				

Before a component is added or replaced, be sure to turn off the main power supply.
5.1 Addition of option card (SF-OR, SF-DA, SF-TL)

When an option card is added to a controller having no option card, follow the procedure and caution described below.

## Procedure:

(1) Remove the front panel of controller (4 panel mounting screws should be removed).
(2). Place the option card on the card SF-CA, where space is provided for installation of option card, and secure the option card with five mounting screws.
(3) Perform the required settings (Refer to page for card setting, and to page for parameter setting.)

Due care should be taken if parameter(s) must be set. Option card is shipped with the standard settings. Upon reception of option card, check it against the specification for setting.
(4) When setting is changed, the setting table in the order sheets attached to the controller should be revised in accordance to the change.
(5) Install the controller front panel.
(6) Affix the "option card nameplate" attached to the option card to the controller front panel, as shown below.


### 5.2 Replacement of card

For replacement of card, the controller front panel should be removed (remove 4 mounting screws).
(1) Card SF-CA

To replace card SF-CA, remove 2 card mounting screws and disengage 6 card locks.


CAUTION:
Before replacement, check ROM No., switch settings and jumper pin settings.
When it is desirous to use the previous parameter settings, remove the parameter ROM ( $E^{2}$ ROM) from the old card and load it to the new card.
Check engagement of the connector with the SF-PW (connector pins of $\mathrm{SF}-\mathrm{PW}$ should protrude about $1-2 \mathrm{~mm}$ ).

Adjustment:

[^0]
## SF CA


(3) Card SF-PW

To replace, remove card SF-CA, lead terminal screws (3 screws) of card $\mathrm{SF}-\mathrm{PW}$, and $4 \mathrm{SF}-\mathrm{PW}$ card mounting screws.


CAUTION:
Each lead of card SF-PW should be identified. One of white or red leads .... RO terminal One of white or red leads .... SO terminal Green lead .... E terminal
5.3 Replacement of ROM

ROM s should be handled in pair; ROM1 (2F) and ROM2 (4F).

Procedure:
(1) Remove the controller front panel (remove 4 panel mount-
ing screws).
(2) Remove the ROMs.

To remove the ROMS, be sure to use a ROM remover and carefully disengage each ROM from socket.

Use care not to bend ROM pins.
(3) Load new ROMs.

To load, identify each ROM (see ROM No.) and check orientation.

After it is loaded, visually check for condition.

Example of ROM loading failure
(1) Example of loading failure

ROM tilts and its pins are not put into the socket securely.

(2) Example of loading failure ROM pin(s) is not put into the socket.

(4) After the replacement of ROMs, the corresponding description in the "order sheets" attached to the controller should be changed accordingly.
5.4 Replacement of diode module and transistor module
(1) Removal of defective module

Disconnect the wires from the module to be replaced and separate the module from the heatsink to remove the module. When transistor module is removed, note that the base terminal "B" and emitter terminal "E" are of plugin type.
(2) Greasing

Apply uniform film of silicone grease to the back surface of the new module before loading.
(3) Installation

Connect the wires to the new module with the specified torque.
For transistor module, protect the base terminal and emitter terminal with silicone tubes, as they were.

## CAUTION

Since the diodes and transistors are of special specification, use the specified one for replacement.

When your hand may directly touch base terminal "B" or terminal "E" of transistor module, use a grounding means to prevent damage to the transistor module, due to static charge.

	Mode 1	Screw size	Max. clamping torque ( $\mathrm{kg}-\mathrm{cm}$ )	$\begin{gathered} \text { Recommended } \\ \text { clamping torque } \\ (\mathrm{kg}-\mathrm{cm}) \end{gathered}$
-	$\begin{aligned} & \text { PT } 768 \\ & \text { PD } 608 \\ & \text { PD } 1008 \end{aligned}$	M $5 \times 0.8$	20	$17 \pm 2$
	UM 75 CDY-10   UM1 OOCDY-10   UM15OCDY-10	M $5 \times 0.8$	20	$17 \pm 2$

Table 5.1 Clamping torque table
5.5 Disassembly and assembly of SJ type AC spindle motor

1 Cables and P.C. board
(1) Remove the cover of terminal box located on the fan case.
(2) Disconnect the cables coming from the electric enclosure.
a) 3 motor main leads ( $U, V$ and W).
b) 2 cooling fan leads (BU and
 BV).
c) 2 thermal protector leads (OHS1 and OHS2).
d) Cable connected to the external connector of P.C. board.
(3) Remove the external connector from the connector bracket. Disengage the internal connector.
(4) Remove the P.C. board mounting pan head screws to remove the P.C. board.
(5) To assemble, perform the reverse steps.


For models smaller than 132 Fr
(1) Remove the hexagon socket head bolts used to secure the finger guard.

(2) Remove the panhead screws at the center of the cooling fan to remove the fan.
(3) Cut the four fan leads.

Remove the pan head screws and draw out the fan motor from the fan case.

(4) To assemble, perform the reverse steps $((3) \rightarrow(1))$.


For models larger than frame No. 160
(1) Remove 3 fan case mounting hexagon socket head screws. Pull back the fan case to remove the fan case together with fan.

(2) Remove the hexagon socket head bolts used to install the finger guard.

(3) Cut the three leads of cooling fan. Remove the pan head screws used to install the cooling fan and draw out the fan from the fan case.

(4) To assemble again, perform the reverse stẹps ((3) $\rightarrow$ (1)).


3 Sensor and sensor gear
(1) Disengage the sensor connector (internal) from the P.C. board in the terminal box.
(2) Remove the three fan mounting hexagon socket head screws. Pull back the fan case to remove the
 fan case together with fan.
(3) Remove the two pan head screws used to install the sensor bracket to remove the sensor bracket together with sensor (take care to prevent hitting of the sensor against the sensor gear).
(4) To adjust sensor position, loosen the sensor mounting screw with the sensor bracket held in position and insert a thickness gauge into the gap between the sensor
 and the sensor gear. Adjust the gap to $0.15 \pm 0.01$.
After making sure that
the sensor marking
lines are aligned with each other, tighten the sensor mounting screw to secure the sensor in position.
(5) Apply lock paint to the sensor mounting screw and the sensor bracket mounting screws.
(6) When the sensor is put into the fan case, arrange the
 sensor leads properly to prevent sensor lead from being wedged.
(7) To remove the sensor gear, screw eye bolts (M8) into the tapped holes and apply a tool shown to the right to the bolts.

After the removal of the sensor gear, remove the two eye
 bolts.
(8) To install the sensor gear again, it must be shrinkage-fit at temperature within $100^{\circ} \mathrm{C}-150^{\circ} \mathrm{C}$.

Note that excessively high temperature may cause distortion to the gear.

## 4 Bearings

(1) Remove the shaft case cover mounting screws and the bracket mounting hexagon socket head bolts and remove the bracket on the counterload side.
(2) When the bracket on the counterload side is installed again, apply sealing compound to the fit-


Shaft case cover mounting screw ting surface.
(3) To remove the bearing on the counterload side, remove the shaft stop ring and apply a bearing remover.

The bearing can be removed together with the shaft case cover.

(4) To remove the bearing on the load side, apply a bearing remover to the inner ring of bearing and turn the handle of bearing remover.

(5) To install bearing to shaft, all fitting surfaces should be thoroughly cleaned and smoothed.
(6) Apply grease to bearing bore surface and shaft. Put a pipe on the bearing inner ring and carefully depress the bearing by a press machine.


Press machine is used to install
(7) If press machine is not available, lightly hammer the pipe to drive.

Use care not to hammer the outer ring of bearing.


Hammer is used to instal.
§6. INSTALLATION OF ORIENTED SPINDLE STOP POSITION DETECTOR
6.1 Magnesensor 1-point oriented spindle stop
6.1.1 Magnet and sensor

The sensor generates two types of voltage signal as shown in Fig. 6.1.



Fig. 6.1 Sensor signals

MS signa. .... Signal voltage is zero volt when the center. of magnet comes to the sensor head, and maximum at both the extremities of magnet.

Spindle is stopped with this signal at OV.

LS signal ..... Signal voltage is constant within the zone (width) of magnet.

This signal is used to verify that spindle remains stopped within the zone of magnet.
6.1.2 Operation mode and motion pattern
(1) Operation mode


When direction of oriented spindle stop motion has been fixed (by parameter setting) and is inverse to the direction of normal spindle rotation (run), the motion pattern is as follows:

(2) Operation
(a) When oriented spindle stop command signal turns on, motor speed changes to "oriented spindle stop speed".
(b) When spindle speed reaches the oriented spindle stop speed, "up-to-speed" signal turns on.
(c) When sensor "LS" signal falls to "L" after the up-tospeed signal turns on, the slow-down timer starts counting (software timer).
(d) When the slow-down timer counts up, spindle speed changes from the oriented spindle stop speed to "creeping speed".
(e) When sensor "LS" signal rises (H), control mode changes to positioning control mode.
(f) The spindle stops when sensor "MS" signal turns on.
(g) "Oriented spindle stop complete" signal turns on.

Direction of oriented spindle stop motion (set by parameter ORS2)

(1) PRE	Direction is same as that of previous   rotation.
(2) NORMAL	Direction is same as that of normal spindle   rotation.
(3) REVERSE	Direction is reverse to that of normal   spindle rotation.

6.1.3 Types and outside dimensions of magnesensor

For oriented spindle stop, the following combinations of amplifier, sensor and magnet are available.

Type	Permissible speed   〔R PM〕	Model		Combination		
				Amplifier	Sensor	Magnet
Standard	$0 \sim 6000$	MAGSENSOR	B KO-C1810H01-3	H O 1	H0 2	H03
$\begin{aligned} & \text { High-speed } \\ & \text { standard } \\ & \hline \end{aligned}$	$0 \sim 12000$	MAGSENSOR	B KO-C1730 H01. 2.6	H01	H0 2	H06
High-speed miniature	$0 \sim 12000$	MAGSENSOR	B KO-C1730H01.2.9	H01	H02	H09
$\begin{aligned} & \text { High-speed } \\ & \text { ring } \end{aligned}$	$0 \sim 2.5000$	MAGSENSOR	B KO-C1730H01.2.11	HOL	H0 2	H11
$\begin{aligned} & \text { High-speed } \\ & \text { ring } \\ & \hline \end{aligned}$	$0 \sim 30000$	MAGSENSOR	B KO-C1730H01.2. 12	HOL	H02	H 12
$\begin{aligned} & \text { High-speed } \\ & \text { ring } \end{aligned}$	$0 \sim 30000$	MAGSENSOR	B KO-C1730H01.2 13	H01	H02	H 13
$\begin{gathered} \hline \text { High-speed } \\ \text { ring } \end{gathered}$	$0 \sim 30000$	MAGSENSOR	B KO-C1730H01. 2. 14	H01	H0 2	H14

Note: Combination of amplifier, sensor and magnet is possible within the same model group (C1810 or C1730).

Outside dimensions:

- Amplifier HO1

- Sensor HO2


For BKO-C1730HO2, TRC116-12A1O-7M is used.

6.1.4 Orientation of magnet and sensor head

The magnet and sensor head should be installed in the .specified orientation.

Standard type .... The center reference hole of magnet High-speed standard type

High-speed miniature type
.... The reference notch of sensor head should be located in reference with polarity ( $N, S$ ) of magnet.

Refer to CASE 4, CASE 5 and UNACCEPTABLE EXAMPLE 2.

High-speed $\quad .$. The reference notch of sensor head ring type should be located in reference with polarity ( $\mathrm{N}, \mathrm{S}$ ) of magnet.

Refer to CASE 6, CASE 7 and UNACCEPTABLE EXAMPLE 3 .

CASE 1 .... Magnet is installed on the circumferential surface of rotating disk.

The center reference hole of magnet and the reference notch of sensor head should come on the counter-load side, as shown in Fig. 6.3.


Magnet is installed on sircumferential surface of rotating disk.

```
CASE 2 Magnet is installed on the front or back flat surface of ratating disk.
```

(1) When the magnet is installed on the counter-load side of spindle, the reference hole of magnet and reference notch of sensor head should face inward, as shown in Fig. 6.4.
(2) When the magnet is installed on the load side of spindle, the reference hole of magnet and reference notch of sensor head should face outward, as shown in Fig. 6.5.


Magnet is installed on the counter-load side.


Magnet is installed on the load side.

CASE 3 .... In CASE 1 , the magnet and sensor head can be located, as shown below, so far as the magnet is aligned with the sensor head correctly.
When the magnet and sensor head are installed, as shown below, however, bit for parameter (orientation of oriented spindle stop detector) must be changed correspondingly (parameter ORS2).


UNACCEPTABLE EXAMPLE 1 .... If the reference hole of magnet and the reference notch of sensor head are not on the same side, intense vibration occurs when the sensor head is at eextremity of the magnet (oriented spindle stop is impossible).


CASE 4 .... Magnet is installed on the circumferential surface of rotating disk.

The reference notch of sensor head should be on the counter-load side and the magnet should be installed in the polarity shown below.


Magnet is installed on the circumferential surface of rotating disk.

CASE 5 .... So far as the relationship between location of the reference notch of sensor head and the polarity of the magnet is in accordance with CASE 4 , the sensor head and the magnet can be installed as shown below.
(Bit for parameter (orientation of oriented spindle stop detector) must be changed cor-


CASE 6 .... The reference notch of sensor head is on the counter-load side of spindle and the polarity of the magnet is as shown below.


CASE 7 .... So far as the relationship between location of reference notch of sensor head and the polarity of the magnet is in accordance with CASE 4 , the sensor head and the magnet can be installed as shown below.
(Bit for parameter ORS2 (orientation of oriented spindle stop detector) must be changed correspondingly.)


UNACCEPTABLE EXAMPLE 3 .... If the reference notch of sensor head sensor is not located properly in reference to polarity of the magnet, intense vibration occurs when the sensor head is at extremity of the magnet, and oriented spindle stop is impossible.


In this example, polarity ( $N, S$ ) of magnet is inverse to that in CASE 4 .
6.1.5 Caution on installation of magnet

When the magnet is installed to the spindle, pay attetion to the following:
(1) Do not locate an intense magnetic source near the magnet.
(2) Carefully handle the magnet, avoiding mechanical shock to the magnet.
(3) Secure the magnet to the spindle with appropriate screws.
For applicable screws, refer to the drawing showing the outside view of magnet.
(4) After the magnet is installed, balance the entire spindle.
(5) Align the center of the magnet (between $N$ and $S$ ) with the center line of the rotating disk and make sure the orientation of the magnet and sensor head is as indication in CASE 1 - CASE 7 .
(6) Keep clean the magnet and its peripheral to be free from iron particles (iron particles may cause malfunction).
(7) Apply lock paint, or other suitable means, to prevent mounting screw from becoming loose.
(8) If the magnet is intalled on a ground rotating disk, demagnetize the disk.
(9) Diameter of rotating disk on which the magnet (other than ring type) is intalled should be within the range from 80 mm to 120 mm .
When spindle speed is low, however, use a rotating disk of larger diameter.
(10) If speed of the spindle exceeds $6,000 \mathrm{rpm}$, use a highspeed type, high-speed miniature type or high-speed ring type magnet.

### 6.1.6 Caution on installatin of sensor head

(1) Install the sensor head in accordance with CASE 1 CASE 7.
(2) Align the center line of sensor head with the center
of magnet.
(3) Gap between the magnet and the sensor head is listed in Table 1 - Table 3.

When a standard type magnet is installed in accordance with CASE 1 or CASE 3, refer to Table 1. When a high-speed standard magnet is installed in accordance with CASE 1 or CASE 3 , refer to Table 1.

When a standard magnet is installed in accordance with CASE 2, refer to Table 2.

When a high-speed standard magnet is installed in accordance with CASE 2, refer to Table 2.

When a high-speed miniature magnet is installed in accordance with CASE 1 or CASE 3, refer to Table 3.
*When magnets are mass-produced, it is recommended to prepare jigs for production.
(4) Connector for BKO-C1810 is oil-proof. Connector for BKO-C1730 is not oil-proof. It is recommended that the connector is located where is free from oil.
(5) The cable between the amplifier and the controller should be laid down apart from high-voltage cables.
(6) Check the connector wiring, securely engage the connector and tighten connector lock screws.


Table 1

	ВKO-C1810H03		BKO-C17301106	
Radius (R) mm	Max. gap ma	Min. gap mm	Max. gap mm	Min. gap mm
40	$11.5 \pm 0.5$	$2.7 \pm 0.5$	$10 \pm 0.5$	$1.22 \pm 0.5$
50	$9.5 \pm 0.5$	$2.8 \pm 0.5$	$8 \pm 0.5$	$1.31 \pm 0.5$
60	$8.5 \pm 0.5$	$3.0 \pm 0.5$	$7 \pm 0.5$	$1.5 \pm 0.5$
70	$8.0 \pm 0.5$	$3.4 \pm 0.5$	$7 \pm 0.5$	$2.38 \pm 0.5$

Table 2

	BKO-C1810H03	BKO-C17301106
Radius (R) mm	gap mm	gap mm
40	$6 \pm 0.5$	$5 \pm 0.5$
50	$"$	$"$
60	$"$	$"$

Table 3

.	BKO-C17301109	
Radius (R) mm	Max. gap mm	Min. gap mm
40	$6.25 \pm 0.5$	$3.3 \pm 0.5$
50	$6.0 \pm 0.5$	$3.7 \pm 0.5$
60	$5.75 \pm 0.5$	$3.85 \pm 0.5$
70	$5.5 \pm 0.5$	$3.87 \pm 0.5$

```
6.2 Encoder type oriented spindle stop (4096 points)
6.2.1 Operation mode
```



### 6.2.2 Operation

(1) When oriented spindle stop command signal turns on, the spindle stop position specified by parameter PST is read and motor speed is changed to "oriented spindle stop speed".
(2) When motor speed reaches the specified oriented spindle speed, "up-to-speed" signal turns on.
(3) When a mark pulse is input after the up-to-speed signal turns on, the counter starts counting. The oriented spindle stop speed remains unchanged.
(4) When the spindle reaches $146^{\circ}$ - $225^{\circ}$ from the specified stop position, spindle speed changes from the oriented spindle stop to "creeping speed".
(5) When the spindle reaches $15-25^{\circ}$ from the specified stop position, control mode changes to "positioning control loop".

The spindle stops when it reaches the specified position.
(6) "Oriented spindle stop complete" signal (contact ORA1 ORA2 signal) is output when the spindle enters the zone
(stop position $\pm$ in-position range), specified by parameter ZRZ.
(7) When the oriented spindle stop command is withdrawn, motor speed returns to the previous speed.
(8) If oriented spindle stop command is given again during oriented spindle stop motion, the spindle orient-stops after one revolution of rotation.

The spindle, however, may rotate over one revolution, depending on settings of oriented stop position and position shift (parameter PST).
(9) When "machine ready complete" signal (SET1, SET2) is turned off and then on while the spindle is in oriented stop condition, the spindle remains stopped.
(10) Stop position (SF - OR .... when card DA is used) Stop position can be specified by 12-bit signal (O1H 12H). When all bits are off, the spindle stops at the basic stop position (0 deg.).

Stop position $=\frac{360}{4096}\left((H 12) \cdot 2^{\prime \prime}+(H 11) \cdot 2^{10} \div\right.$

Ex.: When only " HlO " is on, the spindle stop position is,

$$
\frac{360}{4096} \times 512\left(2^{\prime}\right)=45^{\circ}
$$

The least setting increment is, $360^{\circ} / 4096=0.088^{\circ}$
Integer (1, 10, ....), if specified for stop position, causes error, due to fraction from multiplied least setting increment (0.088).

The relationship between orientation of installed encoder and stop position is as follows:


### 6.2.3 Compisition



Fig. 6.11
Note: If direction of motor rotation differs from direction of encodor rotation, adjust direction by changing parameter setting.

### 6.2.4 Outside dimensions

Encoder (1024P/rev) RFI-1024-22-1M-68

§7. PROFILING CONTROL (C-AXIS CONTROL) ENCODER

### 7.1 Name

Encoder OSE90K+1024 ..... BKO-NC6336HO1
7.1.1 Outside dimensions


Notes: 1. Speed of encoder should not exceed 6000rpm.
2. Tolerance to dimensions should be $\pm 0.5 \mathrm{~mm}$ unless otherwise specified.

### 7.1.3 Connectors

(1) Connector: MS3102A20-29P
(2) Connection

	Signal output	Remarks
1 ch	$1024 \mathrm{C} / \mathrm{T}$	A.B phase $\overline{\text { I }}$. $\Xi$ phase
2 ch	$1 \mathrm{C} / \mathrm{T}$	$z$ phase. $Z$ phase
3 ch	$90000 \mathrm{C} / \mathrm{T}$	C. D phase, $\bar{C} . \overline{\mathrm{D}}$ phase
4 ch	$1 \mathrm{C} / \mathrm{T}$	$Y$ phase. $\bar{Y}$ phase


Pin	Function
A	1ch A phase
B	2ch Z phase
C	1ch B phase
D	
E	Case GND
F	3ch C phase
G	3ch D phase
H	D C + 5 V -105
J	OV


Pin	Function
K	0 V
L	3ch $\overline{\mathrm{C}}$ phase
M	3ch $\overline{\mathrm{B}}$ phase
N	1ch $\overline{\mathrm{A}}$ phase
P	2ch $\overline{\mathrm{Z}}$ phase
R	1ch $\overline{\mathrm{E}}$ phase
S	4ch Y phase
T	4ch $\overline{\mathrm{Y}}$ phase

Admitted electrical speed is 166 rpm for signal in 3 channel (C, D phases, $\bar{C}, \bar{D}$ phases)

### 7.1.4 Mechanical specifications

(1) Rotational characteristics
a. Inertia
: Max. $100 \mathrm{~g}-\mathrm{cm}^{2}$
b. Shaft frictional torque: Max. $1 g-\mathrm{cm}$
c. Shaft angular acceleration: Max. $10^{5} \mathrm{rad} / \mathrm{sec}^{2}$
d. Permissible max. speed: 7,030rpm
(2) Mechanical construction
a. Bearing
: Reoiling is not required for $100,000 \mathrm{hr}$ of operation at $2,000 \mathrm{rpm}$, and $20,000 \mathrm{hr}$ of operation at $6,000 \mathrm{rpm}$.
b. Shaft runout : Max. 0.2 mm at 15 mm from shaft end
c. Permissible load: 10 kg ( 5 kg during operation) in thrust direction
20 kg ( 10 kg during operation) in radial direction
d. Weight : Max. 2kg
e. Error in perpendicularity of flange surface against shaft: Max. 0.05 mm
f. Eccentrisity in flange engagement: Max. 0.05 mm
(3) Environment
a. Operating temperature range: $-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
b. Storage temperature range: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
c. Humidity : 95\%RH (at $45^{\circ} \mathrm{C}$ ) for 8 hours
d. Vibration $: 5-50 \mathrm{~Hz}$, full amplitude, 30 min . for each axis
e. Mechanical impact: 30G, $11 \mathrm{msec}, 10$ times for each axis
7.1.5 Handling, installation and operation of encoder

1. Installation of encoder

It is recommended that flexible coupling is used to connect the encoder to the spindle.
(1) Runout and misalignment in encoder connection should be within the following limitations:

(2) Recommended coupling

	Example 1	Example 2
Manufacturer	TOKUSHU SEIKO	EAGLE
Model	Model M1	FCS38A
Resonance fre-   quency	$1,374 \mathrm{~Hz}$	$3,515 \mathrm{~Hz}$
Error in posi-   tion detection	$0.8 \times 10^{-3} \mathrm{deg}$.	$1.2 \times 10^{-3} \mathrm{deg}$.
Permissible   speed	$20,000 \mathrm{rpm}$	$10,000 \mathrm{prm}$


		Example 1	Example 2
Misalign-   ment	Eccent-   ricity	0.7 mm	0.16 mm
	Angular   dis-   place-   ment	1.5 deg.	1.5 deg.
	Max.   length	74.5 mm	33 mm
	Max.   dia-   meter	$\phi 57 \mathrm{~mm}$	$\phi 38 \mathrm{~mm}$

For details, refer to the relevant catalog.
2. In order to assure the maximum performance of encoder, note the following:
(1) Power supply of encoder should be more than 4.5 V .
(1) Use wires large enough for +5 V and $O V$ lines.
(2) Use two ore more wires for +5 V and $O V$ lines.
(3) Use a cable as short as possible (shorter than 8 m for cable side of 0.3 sq . ( $100 \mathrm{ohm} / \mathrm{km}$ ).
(2) In the connector on the encoder side, short-circuit between pins (E) and (J), or (K).
(Use a short wire of 0.75 sq. - 1.25 sq.)

3. Others
(i) Carefully handle the encoder, avoiding mechanical shock to the encoder.
(2) Wrong wiring may cause serious trouble. Before wiring
the encoder, carefully identify connector name, pin No., etc. to avoid miswiring.
§8. TROUBLESHOOTING
8.1 General information

If any trouble occurs with the control system, perform the preliminary check described below and then proceed to the troubleshooting described later.

The following preliminary check is very important when you consult with service engineer.

Preliminary check:

1. Was any alarm displayed on the controller?

If yes, identify the cause of alarm.
Also examine frevious alarms through the LED readout in "alarm" mode (refer to "Alarm/warning table").
2. If fuse was blown out, identify the phase in which the blown out fuse was used (control circuit power supply fuse).
3. Is the trouble or failure reproducible?
4. Are ambient temperature and panel inside temperature normal?
5. When the trouble occurred (during acceleration, or deceleration, or steady-speed operation)?
What was the speed?
6. Is direction of rotation correct?
7. Did instantaneous power failure not occur?
8. Does the same trouble occur in a specific operation, or when a specific command is given?
9. How frequently occurs the trouble?
10. Does the trouble occur when load is applied, or when load is removed?
11. Was any part replaced or any provisional remedy done?
12. How many years have been used the control system?
13. Is supply voltage normal?

Does it change from time to time?
8.2 First step of troubleshooting

Perform the following check:
(1) Power supply voltage should be $200 \mathrm{~V}_{-1}^{+15 \%}, 50 / 60 \mathrm{~Hz}$, or 210V, 210 V or $230 \mathrm{v}_{-1}^{+10 \%}$.

In any case, it should not go down below $-15 \%$ of 200 V .

- Check if the supply voltage drops at a specific time everyday.
- Check if the supply voltage drops at start of a specific machine in the factory.
(2) Are the peripheral control devices or functions in good condition?
- Are the NC and programmable controller wired properly?
- Visually check cables and other components for condition.
(3) Is temperature inside and outside the control equpment below $55^{\circ} \mathrm{C}$ ?
(4) Visually check the control equipment.
- Cards, circuit patterns, etc.
- Looseness of wire, damage, foreign matter, etc.
(5) Are all SF-PW DC supply voltages proper?

The most likely troubles or failures with FR-SF can be largely divided into the following two groups:

Trouble A $\quad$| Control equipment does not work satisfactori- |
| :--- |
| ly when it is turned on for the first time (I). |
| Control equipment comes into a standstill |
| abruptly (II). |

Trouble B	$\left[\begin{array} { l }  { \text { Trouble with } } \\ { \text { control equip- } } \\ { \text { ment } } \end{array} \quad \left[\begin{array}{l} \text { Failure in main circuit } \\ \text { Failure in control circuit } \end{array}\right.\right.$
	- Trouble with   detector$\quad \begin{aligned} & \text { Failure } \\ & \text { encoder }\end{aligned}$ in speed detect
	- Failure in multi-point oriented spindle stop encoder   Failure in 1-point oriented spindle stop magnesensor
	- Failure in parameter data transfer from NC   - Trouble with power supply
	- Trouble with motor
	Other troubles (mismatching input signal conditions, cable disconnection, etc.)

### 8.3 Second step of troubleshooting

Trouble I	Checkup	Remedy		
Control equip-   ment does not   work satisfac-   torily when it   is turned on   for the first   time.	As far as the control   equipment is handled   carefully, this type of   trouble is quite unlikely   to occur. The most   possible cause is,   (1) Mechanical shock or   impact was given to   the equipment dur-   ing shipment, in-   stallation or hand-   ling.	(1)Visually check if   any part of the   equipment is dam-   maged.$\quad$(2) Wiring is incorrect,   or disconnected.   Check grounding wire.   (It is not required   to consider power   phase sequence.)		(2) Check that the power
:---				
indicator LED in				
SF-PW is on.				
Check the wiring.				


Trouble I	Checkup	Remedy
-	(3) Check ROM No. and parameters against the order sheets.	(3) If discrepancy is found, replace ROM or change parameter setting.
	(4) Motor speed cannot be increased.	(4) Interchange motor connection between any two phases ( U , $V$ and $W$ ).
	(5) No-load operation is in good condition.	(5) Check load condition.
	(6) Only oriented spindle stop function is not in good condition (overrun, etc.)	(6) Readjust.
	(7) "Alarm" lamp lights.	Refer to 7.4.

Note 1: "Start signal CW (CCW)" should be turned on after "READY" signal and "speed reference" signal have been input.

Trouble II   Control equip-   ment comes into   a standstill   abruptly	(1) Check if fuse was   blown out or main	(1) Remedy   circuit no-fuse break-   fuse. If fuse is


Trouble II	Checkup	Remedy
	(4) Are signals from NC and programmable controller proper?   Check the input signals (machine "READY", "FWD run", "REV run", etc.), using "diagnosys" function (readout).	(4) Correct input signal.
.	(5) In open-loop control mode,   - set control parametter to $\frac{00}{\text { ADD }} \frac{0001}{\text { DATA }}$,   - input "speed reference" signal and "start" command to try operation.   (Control mode returns to closed-loop mode, when PB1 button is pressed, or the power is turned off after parameter setting.)	(5). If operation becomes possible, it is likely that speed feedback system is in failure..... replace the encoder.   If operation is impossible, it is likely that the main circuit is in failure ("alarm" lamp will light).


Trouble III	Checkup	Remedy
Control equipment fails from time to time, or error occurs in oriented spindle stop position. (Condition is restored when the power is turned off and then on to reset.)	In this case, the comprehensive analysis must be accomplished to determine the cause (load condition, operation mode, etc.).	
	(1) Check if instantaneous power failure occurred or "UNDER VOLTAGE" was displayed.	(1) Check the power supply.
	(2) Check if malfunction occurred in contol circuit, due to large noise.   The control equipment is capable of withstanding noise (in power supply) of 1600V/ $1 \mu \mathrm{~s}$.	(2) Determine the noise source and install a surge killer, etc.   Çheck and improve grounding method (particularly, grounding of detector).
	(3) Check if overload occurred due to momentary change of load.   Check with particular care if error occurred in oriented spindle stop.	(3) Check mechanisms carefully.   Check backlash between spindle and spindle encoder.

8.4 Detailed troubleshooting
8.4.1 "Alarm warning" displayed by LED readout
(1) OVERHEAT, MOTOR


OHS1/OHS2 opened

Cause	Checkup	Remedy
Overload	1. Check motor load condition.   2. Start and stop are too frequent.	1. Lighten motor load.   2. Decrease start and stop frequency.
Fan trouble	1. Check the fan motor.	1. Remedy or replace the fan.
Motor air   filter loaded	1. Check air flow from motor.	1. Clean the motor air filter.
Thermosensor trouble	1. Allow the motor stopped for several minutes and start again to check.	1. For provisional remedy, close OHS1/OHS2.   2. Replace the motor.

(2) ERROR EXCESS, SPEED


This display occurs if difference between specified speed and true speed is larger than 500 rpm , lasting for 12 sec . or more.

Cause	Checkup	Remedy
Overload	1. Check motor load condi-   tion.	1. Lighten the load.
Speed detect   encoder   trouble	1. Check if operation is   possible in open-loop   mode.	2. Replace the encoder.


Cause	Checkup	Remedy
Card trouble	1. SF-CA card is defective.	1. Replace the card.

(3) BREAKER TRIP


This display appears if the main power no-fuse breaker trips. It may be possible that "IOC" (converter/inverter) appears prior to this display.

Cause	Checkup	Remedy
Power supply voltage below 180V	1. Check if supply voltage decreases during deceleration (regenerative operation).	1. If voltage of line power supply itself is close to 180V, this alarm is likely to occure in transition. Boost the power supply voltage or increase the power supply capacity.
Refer to "IOC trip".		

(4) PHASE LOSS .... Phase failure


This display appears if any phase fails when the power is turned on.

Cause	Checkup	Remedy
Phase discon-   nected	1. Check voltage in each   input phase.	1. Securely connect the   power supply cable.
Fuse F1, F2   or F3 blown   out	1. Check if there is   short-circuiting.	1. Replace the blown out   fuse after removal of   the cause.

(5) OVER SPEED


This display appears if motor speed exceeds $115 \%$ of the rated speed.

Cause	Checkup	Remedy
Speed detector   trouble	1. Check frequency of en-   coder output (card CH44,   CH45).	1. Replace the speed de-   tector (encoder).   Frequency should be   $\frac{256 \times 1500}{60}=6.4 \mathrm{kHz}$ at   $1500 r p m$.
Trouble with   speed detect   circuit/speed   reference cir-   cuit	2. Speed control card (SF-   CA) is defective.	1. Replace the card.

(6) INVERTER, CONVERTER .... "IOC TRIP" CONVERTER IOC


INVERTER IOC


Both the alarms "INVERTER IOC" trip and "CONVERTER IOC" trip are due to overcurrent.

If IOC alarm occurs again after resetting, it is likely that semiconductor in the main circuit is defective.

Cause	Checkup	Remedy
Power transistor   damaged	Disconnect the controller   from the motor and op-   erate only the control-   ler to see if IOC trip	Replace defective power   transistor(s).


Cause	Checkup	Remedy
	is displayed again.   - If display appears, again, power transistor is defective.   - If display does not appear, proceed to the next step.	
Motor load excessive	Check motor load condition.	Lighten the load.
Motor wiring improper	Check motor wiring.   Check motor wiring terminal screws for looseness.	Improve wiring.   Retighten loose terminal screws.
Motor winding layer-shortcircuit or ground fault	Measure insulation resistance, using a megger (insulation resistance should be larger 1 Megohm).	Replace the defective motor.
Voltage drop	Check power supply voltage (the voltage should be at least 170 during acceleration, deceleration and operation under load).	Use power supply of larger capacity.
Supply voltage waveform	Observe. supply voltage waveform on a synchroscope to check that waveform does not change during acceleration and deceleration.   1. Partial discontinuation   To be less than $100 \mu s$   2. Peak is chipped.   To be less than $2-3 \%$	Eliminate distortion of waveform   1. Increase power supply capacity or use power cable of larger size.


Cause	Checkup	Remedy
Power supply   frequency un-   stable	Frequency variation should   be within $\pm 3 \%$.	Improve power supply   frequency characteris-   tic.
Current detect   circuit trouble	Check if failure in current   detection occurs at peak   voltage of 10V, measured   across CH43 and AGA on the   inverter side.	Replace card SF-CA.
	Check if failure in current   detection occurs at peak   voltage of $10 V, ~ m e a s u r e d ~$   across CH39 and AGA on the   converter side.	.

(8) OVERHEAT, AMP


This display appears if the controller thermal protector is actuated (for model having cooling fan).

Cause	Checkup	Remedy
Overload	1. Check motor load condition.   2. Start and stop are too frequent.	1. Lighten the load.   2. Decrease start and stop frequency.
Ambient temperature high	Measure ambient temperature.	If temperature around the controller is over $55^{\circ} \mathrm{C}$, use a suitable cooling means.
Fan trouble	Check operation of cooling fan.	Replace the fan.

(9) UNDER VOLTAGE


This display appears if voltage under 170 V lasts for longer than 15 ms .

Cause	Checkup	Remedy
Power supply   capacity   insufficent	The display appears when   speed is changed or load   is excessive.	Increase capacity of   power supply.
Display ap-   pears continu-   ously.	If the input power supply   is in good condition,   SF-PW is not in good con-   dition.   ACDOWN - DO5A   "H" level when control   circuit is in good con-   dition (+5V)	Replace card SF-PWi.:

(10) OVER VOLTAGE


This display appears if voltage across rectifier capacitor is excessive.

Cause	Checkup	Remedy
Power supply   impedance   excessive		Increase capacity of   power supply.
Instantaneous   power failure   or voltage   drop	Reset to check.	
Detector cir-   cuit trouble	If the cause cannot be de-   termined by the check des-   cribed above, it is likely   that the detector circuit   is defective.	Replace card SF-CA .-...

(11) MEMORY ERROR 1


This display appears if read from, or write to the memory incorporated in the controller cannot be done successfully.

Cause	Checkup	Remedy
ROM loaded im-   properly	Visually check that all   pins of ROM are put into   the socket properly.	Load ROM properly.
Card SF-CA   trouble	Check card SF-CA.	Replace the card   SF-CA.

(12) MEMORY ERROR 2


This display appears if the buffer for bus-linkage with CNC, M300 series, does not function properly.

Cause	Checkup	Remedy
Bus linkage ca-   ble defective		Replace the cable.
Card trouble	Check cved SF-TL.	Replace the card.

(13) NO SIGNAL SPINDLE ENC


This display appears if signal from the encoder is not input correctly.

Cause	Checkup	Remedy
Trouble with   encoder or   cable	Check signal fed back from   encoder, using synchro-   scope (CH1 - CH3 for card   SF-OR, SF-DA and SF-TL)	Replace the defective   encoder or cable.
Card trouble	Check card SF-OR, SF-DA   and SF-TL.	Replace the defective   card.

(14) IC MACO12 ERROR


This displly appears if IC, MACO12, does not function properly.

Cause	Checkup	Remedy
Cause	Check card SF-CA.	Replace card SF-CA.

(15) DATA PARITE, DATA TRANSFER ERROR

DATA PARITY


The upper display appears when parity error occurs in data communication with CNC, M3OO series.

The lower display appears when data transfer to CNI, M3OO series.

Cause	Checkup	Remedy
Trouble with   terminal re-   sistor	Check the terminal resist-   or in condition.	Replace the terminal   resistor.
Trouble with   cable for bus   linkaat	Check the cable for bus   linkage.	Replace the cable.
Card trouble	Check card SF-TL.	Replace the card.

(16) DATA ERROR, PARAMETER ERROR

DATA ERROR

PARAMETER ERROR


The upper display appears if value of mition command exceeds the maximum limit (when the controller is bus-linked with CNC, M3OO series).

The lower display appears if parameter setting exceeds the permissible maximum value (when the controller is bus-linked with CNC, M300 series).

Cause	Checkup	Remedy
Parameter set-   ting not ac-   ceptable or   programming   error	1) Check the parameter set-   tings against the order   sheets.	1) Set parameter(s)
properly.		
2) Check the program.		

(17) ERROR EXCESS, POSITION


This display appears if error in positioning is excessively large.

Cause	Checkup	Remedy
Position de-   tector trouble	Check the waveform if cign-   vl fex back from the detec-   tor (encoder).	Replace the detector   (encoxer).
Deteptor sel-   ect parameter   setting error	Chepk detector select para-   meter (PLG).	Correct parameter   setting (FR-SF)


Cause	Checkup	Remedy
Positioning com-   mand constant   too small.	Check positioning com-   mand constant.	Use larger position-   ing command constact.

### 8.4.3 Troubles that are not displayed by LED readout

(1) No alarm display appears and motor does not start ....

Cause	Checkup	Remedy
Miswiring or wire disconnection	Check the wiring.	Correct or remedy the wiring.
Input power   supply (voltage)   improper	Check the input power supply (200V 50 Hz or $200-$ 230 V 60 Hz ).	Use the specified power supply.
Card output voltage improper	Measure output voltage of card SF-PW, using a multimeter.	Replace the card SF-PW, if necessary.
Trouble with card	Set parameters as follows $\frac{00}{A D D} \frac{0001}{D A T A}$   In open-loop mode, increase speed reference and see if the correct waveform can be obtained. Card SF-CA   CH23 - AGA ( CH 2 )   CH14 - AGA (CH2)	If the correct waveform cannot be obtained, replace card SF-CA-...
Emergency stop or reset signal input from external source		Check the signal wiring.
Card SF-CA pin 1 , 2 setting error	Check if nothing is displayed by LED readout while the control power supply is on.	Correct card SF-CA Pin 1, 2 settings

(2) No alarm display appears but motor rotates very slowly...

Cause	Checkup	Remedy
Motor connection improper	Check the motor phase sequence on controller terminals $U, V$ and $W$.	Wire the motor correctly.
Input power supply improper.	Check the input power supply.	Use the specified power supply.
Illegal speed reference signal given from external source	Increase speed reference (input from external source) and see if motor speed increases in accordance with speed reference.	Remedy the external   speed reference   signal circuit.
Trouble with speed detect encoder	In open-loop mode,   - set controller parameter to $\frac{00}{\text { ADD }} \frac{0001}{\text { DATA }}$   - input speed reference and start command to check if operation is possible.   If PB1 is pressed or power is turned off to reset, the control mode changes to "closed loop" mode.	Replace the encoder if necessary.

(3) Motor does not rotate only within specific speed range ....

Cause	Checkup	Remedy
External speed	Check that external speed   reference im-   proper	Remedy the external   speed reference   linearly changes from ov   to 1OV (analog signal   input through CH46 and   AGA)

(4) Motor torque is insufficient .....

Perform check (1), (2) and (5).
(5) Longer time is required for start .....

Cause	Checkup	Remedy
Load heavy	Check load condition.	Lighten the load.

(6) Up-to-speed signal is not output (for DIO interface with NC) . . . .

Cause	Checkup	Remedy
Trouble with   card SF-CA or   output circuit	Check that up-to-speed   flag (external output   in "DIAGNOSIS" mode)   turns on at completion   of acceleration or de-   celeration.   When flag turns on, the   output circuit is defec-   tive.	Replace card SF-
CAL.].		

(7) Feed motion by NC is impossible .....

If up-to-speed signal is not output, the corresponding interlock is actuated. Check the control sequence and perform check in accordance with (6).
(8) Speed detect signal is not output (for DIO interface with NC) . . . . . .

Cause	Checkup	Remarks
Trouble with   card SF-CA	Check that speed detect   flag (external output in   "DIAGNOSIS" mode) turns on   when speed is faster than   preset speed.   If the flay turns on, the   output circuit is defective.	Replace card SF-   CA....

(9) Zero speed signal is not output (for DIO interface with NC) . . . .

Cause	Checkup	Remarks
Relay RA1 of   card SF-CA   defective	Check that zero speed flag   (external output in "DIA-	Replace card SF-CA....
GNOSIS" mode) turns on		
when motor speed is slower		
than 25rpm or 50rpm.		
If the flag turns on, the		
output circuit is defective.		

(10) Speed range selection is impossible .....

Speed range selection is impossible when "speed detect" signal or "zero speed" signal is not given.
Perform check in accordance with (8) and (9).
(11) Speed cannot be increased over a certain speed ...

Check the maximum speed setting.
Check if "override" signal is input.
Check load meter reading...... if meter reading is excessively large, examine load condition.
(12) Intense vibration or large noise occurs .....

Cause	Checkup	Remarks
Dynamic unbalance		Check dynamic balance.
Insulation resistance decreased	Disconnect the power cable ( $R, S$ and $T$ ) and measure insulation resistance with a 500V megger (all wires connected to ground terminals should be disconnected).   a) Between entire main circuits and ground   .... To be more than 20Megohm   (Terminals $X_{1}, X_{2}, X_{3}$, u, V, W, MS1 and MS2)	If insulation resistance is low, check the circuits to find deteriorated insulation and remedy.


Cause	Checkup	Remarks
	b) Between control circuit COM and ground   .... To be more than 20 Megohm   ("OM" of terminal block TB1 of card CA)   c) Between entire main circuit and control circuit COM ... To be more than 20 Megohm	
Motor bearing defective	Check that motor can be rotated smoothly by hand.	Replace bearing.
Motor mounting screw loosened	Check motor mounting screws for looseness.	Retighten screws.
Runout of motor shaft	Check if motor shaft is damaged.	Remedy or replace motor.
Reference signal waveform irregular	Check that waveforms observed on CH14, CH23 - CH9 (AG) are well-balanced.	Replace card SF-CA.

(13) Speed can be controlled successfully, but spindle cannot be orient-stopped accurately ......

Cause	Checkup	Remarks
Speed is decelerated to oriented spindle stop speed, but spindle does not stop.	Check if positioning control feedback encoder or magnesensor is in good condition.   Run motor under normal speed control to check positioning control feedback signals. Measure voltages on the following check pins of cards SFOR, DA, AND TL (normal run):   (Mark pulse)   Measure voltages on the following check pins of card SF-OR, DA, or TL (normal run): $\mathrm{CH} 4-\left[\begin{array}{l} \mathrm{SF}-\mathrm{CA} \\ \mathrm{CH9}(\mathrm{AG}) \end{array}\right.$ $\operatorname{CON} 4(16)$ or $\operatorname{CONB}(10)^{-}$CH9   (AG)	Replace encoder or magnesensor.   Card SF-OR (or SF-DA or TL) interface is defective..... replace the defective card.
In multi-oriented spindle stop, stop position during normal run differs from that during reverse run.	Check backlash of encoder.	
Hunting occurs at spindle stop.	Widen the 1st deceleration range to check.   Decrease oriented spindle	Card SF-CA   (2nd deceleration range)   Parameter \#22 PG2


Cause	Checkup	Remarks
,	stop speed.	(1st deceleration range)   Parameter \#21 PG1 (Oriented spindle stop speed)
Spindle stop   position depends on gear selected.	Check gear ratio setting.   Check parameter settings.	Set gear ratio correctly.   If gear ratio has been set correctly, set   1st deceleration range. (PG1)   Oriented spindle speed (OSP)
Servo stiffness low	Check gear ratio setting. Check parameter settings.	Increase speed control loop constant (VKP and VKI).
Speed control overshoot	-	Decrease speed control loop constant (VKP and VKI).

§9. PERIODIC INSPECTION
In order to ensure high-performance operation of equipment, and trouble-free long use of equipment, the periodic inspection is particularly important.

CAUTION: To prevent accident, make sure the power is interrupted completely before starting the inspection.
9.1 Inspection of control equipment

	Frequency	Check	Remedy
1. Cooling fan	Monthly	1. Rotate the fan shaft by hand to check.   2. Turn on the fan to check that the fan runs powerfully.   3. Check if foreign sound occurs in bearing.	Replace the fan.
2. Soiling, deformation, and terminal screw looseness	Appropriate interval	Check the components for cleanliness, and terminal screws for looseness.	
3. Miniature relays	Every 3 months	1. Check contact points for wear.   2. Check that main circuit contactor opens and closes in accordance with relay operation.	Replace defective re- $\operatorname{lay}(s) .$
4. Wiring	Appropriate interval	Check if any wire or conductor is shortcircuited.	

9.2 Inspection of motor

	Frequency	Check	Remedy
1. Sound (noise) and vibratioon	Monthly	- Check if foreign sound or intense vibration occurs.   If foreign sound or intense vibration occurs, perform the following check:   1. Check foundation and installation.   2. Check shaft alignment.   3. Check if vibration is transmitted through shaft coupling.   4. Check if bearing is damaged.   5. Check if noise or vibration is caused by reduction gear or belt.   6. Check control equipment for condition.   7. Check cooling fan for condition.   8. Check belt tension.	
2. Temperature rise	Monthly	- Check bearing temperature.   (Amb. temp. +10 to $40^{\circ} \mathrm{C}$ )   - Check motor frame temperature.   If temperature is high excessively, perform the following check:	Clean.


	Frequency	Checkup	Remarks
		1. Check cooling fan operation.   2. Check cooling air passage (between frame and cover).   3. Check load condition.	
		4. Check control equipment.	Refer to "Troubleshooting".
3. Insulation resistance	Every 6 months	- Check if insulation resistance is excessively low.   To check, measure insulation resistance between the entire circuit and ground (control panel disconnected).   Insulation resistance should be larger than 1 Megohm, measured by 500 V megger. If insulation resistance is less than 1 Megohm, clean and dry motor interior. To dry, disassemble and heat motor at temperature less than $90^{\circ} \mathrm{C}$.	
4. Cooling fan	Weekly   Monthly	- Check cooling fan for operation, noise and vibration.	

§10. PARTS LIST

AC spindle controller and motor

1. Spare A .... Spare parts recommended to be replaced every 2 years.
2. Spare B .... Spare parts recommended to be replaced every 5 years.
3. Spare C .... Spare parts recommended to be stored by machine manufacturer.

-	Part name	$\begin{aligned} & \text { Capac- } \\ & \text { ity kW } \end{aligned}$			Manufacturer	Symbol	$\begin{aligned} & 3 \\ & 0 \\ & 0 \end{aligned}$	Spares				Remarks	
			Model					$\begin{aligned} & \text { Stmininrd } \\ & \text { nccen- } \\ & \text { noriea } \end{aligned}$	Option				
									A	B	C		
1	CIRCUIT bREAKER	5.5	$\begin{gathered} \text { NF50CS } \\ 3 \mathrm{P} \end{gathered}$	40^05	MITUBISIII ELECTRIC	CBI	1	0	0	0	1		
		7.5											
		11		50:05									
		15	NF100CS   $3 P$	75^05									
		18.5		100405									
		22											
		26											
2	TRAN. SISTOR	5.5	UN75CDY-10		MITUBISIII EIECTRIC	TRR   TRS   TRT	3	0	0	0	3		
		7.5											
		11	UM100CDY-10										
		15	UMISOCDY-10										
		18.5											
		22	UM75CDY-10			$\begin{aligned} & \text { TRPI }-3 \\ & \text { TRSI }-3 \\ & \text { TRTI }-3 \end{aligned}$	9	0	0	0	9		
		26											
3	TRAN.   SISTOR	5.5	UM75CDY-10			MITUBISIII   ELECTRIC		3	0	0	0	3	
		7.5	UM100CDY-10										
		11	URIL50CDY-10		TRU								
		15											
		18.5	Us100CD		TRU1. 2		6	0	0	0	6		
		22	URI150CDY-10		TRV1,2								
		26											





$\begin{array}{\|l} \hline \dot{~} \\ \stackrel{\rightharpoonup}{2} \\ \stackrel{\rightharpoonup}{\mathrm{a}} \end{array}$	Part name	$\begin{array}{\|l\|l\|} \hline \text { Canac- } \\ \text { ty ku } \end{array}$	Mode 1	Manufacturer	Symbol	$\frac{2}{2}$	Spares				Remarks
							Standard accersories	Option			
								A	B	C	
20	TERMINAL	$\begin{gathered} 5.5 \\ 1 \\ 26 \end{gathered}$	TE-K2.3	MITSUBISIII   ELECTRIC	$\begin{aligned} & \text { TB4 } \\ & \text { TB11 } \end{aligned}$	2	0	0	0	2	
21	FILTER	$\begin{gathered} 5.5 \\ 1 \\ 26 \end{gathered}$	BKO-NC61431101	SIIIZUK DENKI	FILI	1	0	0	0	1	
22	FUSE	$\begin{gathered} 5.5 \\ 1 \\ 26 \end{gathered}$	MF60NR-5A-S	TOYO	$\begin{aligned} & \text { F1 } \\ & \text { F2 } \\ & \text { F3 } \end{aligned}$	3	3	0	0	3	
23	SURGE   KILLER	$\begin{gathered} 5.5 \\ 1 \\ 26 \end{gathered}$	DCR2-12003-5041	MATSUO DENKI	SK1	1	$0$	0	0	1	
24	PRINTED   CIRCUIT   BOARD	$\begin{gathered} 5.5 \\ 1 \\ 26 \end{gathered}$	BKO-NC6233	YAMABISIII	SF-PK	1	0	0	0	1	
				.							
25	PRINTED   CIRCUIT   BOARD	$\begin{gathered} 5.5 \\ 1 \\ 26 \end{gathered}$	$\begin{aligned} & \text { SF.CA } \\ & \text { (TN990A376G61) } \end{aligned}$	MITSUBISIII ELECTRIC	SF-CA	1	0	0	0	1	
26	OPTION   PRINTED   CIRCUIT   BOARD	-	SF-OR	MITSUBISIII   ELECTRIC	SF.OR	1	0	0	0	1	
		-	SF.TL	MITSUBISIII ELECTRIC	SF-TL	1	0	0	0	1	
27	OPTION MAGNETIC. SENSOR	MAGNET	BKO-C18101103	SONY MAGNESCALE	-	1	0	0	0	1	
			BKO-C1730H06	MACOME		1	0	0	0	1	
			BKO-C17301109								
			BK0-C17301111		-						
			BKO-C1730112		-						
			BKO-C17301113								
			BKO-C17301114								
		SENSOR	BKO-C18101102	SONY MAGNESCALE							
			BKO-C17301102	MACONE		1	0	0	0	1	
		AMPLI -   FIRE	BKO-C18101101	SONY MAGNESCALE	-		0	0	0	1	
			BKO-C17301101	MACOME		1	0	0	0	1	
	OPTION   ROTARY   ENCODER	-	RF111024-22-1M-68	TAMAGAF:.: SEIKI	$\square$	1	0	0	0	1	


宫	Part Name	$\begin{aligned} & \text { Capoc- } \\ & \text { ity } \end{aligned}$	Mode 1	Manufacturer	Symbol	$\begin{aligned} & 2 \\ & 0 \\ & 0 \end{aligned}$	Spares				Remarks
							Stancinrd acceanories	Option			
								A	B	C	
28	PULSE SIGNAL GENERATOR	-	TS1860N14	TAMAGAFA SEIKI	-	1	0	0	0	1	FOR MOTOR
29	FAN	A90	R6550-7	TOBISIII		1	0	0	1	1	FOR   MOTOR
		B90									
		A112	IA. 15101	UNION SEIKO							
		B112									
		B132									
		C132									
		A160	PFA-680.A	AKAMATSU   ELECTRIC							
		B160									
		B180									
		A200	TR300P54-3	TOYO ELECTRIC							
30	BEARING   (LOAD   SIDE)	A90	60622C3	TOYO   BEARING		1	0	0	1	1	FOR   NOTOR
		B90									
		Al12	6307M2ZZCS19								
		B112									
		8132	6310M2Z2CS22								
		C132									
		A160	6312M22ZCS28								
		8160									
		B180	6314Z2C3								
		A200	63162ZC3								
31	BEARING (OPPOSITE SIDE)	A90	600622C3	TOYO BEARING		1	0	0	1	1	FOR MOTOR
		B90									
		Al12	6306M2Z2CS16								
		B112									
		B132	6308M2Z2CS19								
		C132									
		A160									
		B160									
		B180	63102ZC3								
		1200	63122ZC3								


[^0]:    - (a) CH40 - CH9 (AG) (U-phase inverter current) .... VR2 CH41 - CH9 (AG) (V-phase inverter current) .... VR3

    Zero adjustments should be accomplished on VR2 and VR3.

